The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330474 Number of non-isomorphic balanced reduced multisystems of weight n. 16
 1, 1, 2, 7, 48, 424 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements. LINKS EXAMPLE Non-isomorphic representatives of the a(3) = 7 multisystems:   {1,1,1}   {1,1,2}   {1,2,3}   {{1},{1,1}}   {{1},{1,2}}   {{1},{2,3}}   {{2},{1,1}} Non-isomorphic representatives of the a(4) = 48 multisystems:   {1,1,1,1}  {{1},{1,1,1}}    {{{1}},{{1},{1,1}}}   {1,1,1,2}  {{1,1},{1,1}}    {{{1,1}},{{1},{1}}}   {1,1,2,2}  {{1},{1,1,2}}    {{{1}},{{1},{1,2}}}   {1,1,2,3}  {{1,1},{1,2}}    {{{1,1}},{{1},{2}}}   {1,2,3,4}  {{1},{1,2,2}}    {{{1}},{{1},{2,2}}}              {{1,1},{2,2}}    {{{1,1}},{{2},{2}}}              {{1},{1,2,3}}    {{{1}},{{1},{2,3}}}              {{1,1},{2,3}}    {{{1,1}},{{2},{3}}}              {{1,2},{1,2}}    {{{1}},{{2},{1,1}}}              {{1,2},{1,3}}    {{{1,2}},{{1},{1}}}              {{1},{2,3,4}}    {{{1}},{{2},{1,2}}}              {{1,2},{3,4}}    {{{1,2}},{{1},{2}}}              {{2},{1,1,1}}    {{{1}},{{2},{1,3}}}              {{2},{1,1,3}}    {{{1,2}},{{1},{3}}}              {{1},{1},{1,1}}  {{{1}},{{2},{3,4}}}              {{1},{1},{1,2}}  {{{1,2}},{{3},{4}}}              {{1},{1},{2,2}}  {{{2}},{{1},{1,1}}}              {{1},{1},{2,3}}  {{{2}},{{1},{1,3}}}              {{1},{2},{1,1}}  {{{2}},{{3},{1,1}}}              {{1},{2},{1,2}}  {{{2,3}},{{1},{1}}}              {{1},{2},{1,3}}              {{1},{2},{3,4}}              {{2},{3},{1,1}} CROSSREFS Labeled versions are A330475 (strongly normal) and A330655 (normal). The case where the atoms are all different is A318813. The case where the atoms are all equal is (also) A318813. The labeled case of set partitions is A005121. The labeled case of integer partitions is A330679. The case of maximal depth is A330663. The version where leaves are sets (as opposed to multisets) is A330668. Cf. A000311, A000669, A001678, A002846, A004114, A007716, A048816, A213427, A306186, A320154, A320160, A330470, A330666. Sequence in context: A254439 A106159 A160915 * A277501 A277503 A317666 Adjacent sequences:  A330471 A330472 A330473 * A330475 A330476 A330477 KEYWORD nonn,more AUTHOR Gus Wiseman, Dec 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 09:03 EDT 2020. Contains 336201 sequences. (Running on oeis4.)