login
A330679
Number of balanced reduced multisystems whose atoms constitute an integer partition of n.
13
1, 1, 2, 4, 12, 40, 180, 936, 5820, 41288, 331748, 2968688, 29307780, 316273976, 3704154568, 46788812168, 634037127612, 9174782661984, 141197140912208, 2302765704401360, 39671953757409256, 719926077632193848, 13726066030661998220, 274313334040504957368
OFFSET
0,3
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
LINKS
FORMULA
a(n > 1) = 2 * A318813(n).
EXAMPLE
The a(0) = 1 through a(4) = 12 multisystems:
{} {1} {2} {3} {4}
{1,1} {1,2} {1,3}
{1,1,1} {2,2}
{{1},{1,1}} {1,1,2}
{1,1,1,1}
{{1},{1,2}}
{{2},{1,1}}
{{1},{1,1,1}}
{{1,1},{1,1}}
{{1},{1},{1,1}}
{{{1}},{{1},{1,1}}}
{{{1,1}},{{1},{1}}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Sum[Length[totm[m]], {m, IntegerPartitions[n]}], {n, 0, 5}]
CROSSREFS
The case where the atoms are all 1's is A318813 = a(n)/2.
The version where the atoms constitute a strongly normal multiset is A330475.
The version where the atoms cover an initial interval is A330655.
The maximum-depth version is A330726.
Sequence in context: A062962 A033472 A134983 * A342225 A218144 A222919
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 31 2019
EXTENSIONS
a(12) onwards from Andrew Howroyd, Jan 20 2024
STATUS
approved