OFFSET
0,3
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
a(n > 1) = 2 * A318813(n).
EXAMPLE
The a(0) = 1 through a(4) = 12 multisystems:
{} {1} {2} {3} {4}
{1,1} {1,2} {1,3}
{1,1,1} {2,2}
{{1},{1,1}} {1,1,2}
{1,1,1,1}
{{1},{1,2}}
{{2},{1,1}}
{{1},{1,1,1}}
{{1,1},{1,1}}
{{1},{1},{1,1}}
{{{1}},{{1},{1,1}}}
{{{1,1}},{{1},{1}}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Sum[Length[totm[m]], {m, IntegerPartitions[n]}], {n, 0, 5}]
CROSSREFS
The case where the atoms are all 1's is A318813 = a(n)/2.
The version where the atoms constitute a strongly normal multiset is A330475.
The version where the atoms cover an initial interval is A330655.
The maximum-depth version is A330726.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 31 2019
EXTENSIONS
a(12) onwards from Andrew Howroyd, Jan 20 2024
STATUS
approved