login
A330726
Number of balanced reduced multisystems of maximum depth whose atoms are positive integers summing to n.
2
1, 1, 2, 3, 7, 17, 54, 199, 869, 4341, 24514, 154187
OFFSET
0,3
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
EXAMPLE
The a(1) = 1 through a(5) = 17 multisystems (commas elided):
{1} {2} {3} {4} {5}
{11} {12} {22} {23}
{{1}{11}} {13} {14}
{{1}{12}} {{1}{13}}
{{2}{11}} {{1}{22}}
{{{1}}{{1}{11}}} {{2}{12}}
{{{11}}{{1}{1}}} {{3}{11}}
{{{1}}{{1}{12}}}
{{{11}}{{1}{2}}}
{{{1}}{{2}{11}}}
{{{12}}{{1}{1}}}
{{{2}}{{1}{11}}}
{{{{1}}}{{{1}}{{1}{11}}}}
{{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Sum[Length[Select[totm[m], Depth[#]==If[Length[m]<=1, 2, Length[m]]&]], {m, IntegerPartitions[n]}], {n, 0, 5}]
CROSSREFS
The case with all atoms equal to 1 is A000111.
The non-maximal version is A330679.
A tree version is A320160.
Sequence in context: A208987 A176074 A281368 * A059801 A102226 A195530
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 03 2020
STATUS
approved