login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A330723
Numbers k such that A033468(k) = A033468(k+1).
1
7, 29, 45, 49, 67, 71, 75, 97, 99, 111, 121, 127, 131, 141, 143, 161, 171, 173, 199, 211, 215, 227, 241, 253, 265, 267, 273, 277, 285, 287, 293, 301, 321, 333, 335, 337, 341, 347, 359, 379, 381, 391, 393, 407, 417, 437, 447, 449, 455, 459, 475, 493, 497, 503, 511, 515, 519, 523, 525, 537, 539
OFFSET
1,1
COMMENTS
Are all terms odd?
Does the sequence have nonzero asymptotic density?
LINKS
EXAMPLE
a(1) = 7 is in the sequence because A033468(7) = A033468(8) = 204425.
MAPLE
S:= 0: R:= NULL: count:= 0: t:= 0:
for i from 0 while count < 100 do
S:= S + 1/(i^2+1);
s:= t; t:= denom(S);
if s = t then R:= R, i-1; count:= count+1 fi
od:
R;
CROSSREFS
Cf. A033468.
Sequence in context: A075583 A103603 A045465 * A165492 A084201 A031380
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 27 2020
STATUS
approved