login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330466 Irregular triangle read by rows: T(n,k) is the number of parts in the partition of n into k consecutive parts that differ by 2, n >= 1, k >= 1, and the first element of column k is in row k^2. 7
1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 3, 1, 2, 0, 1, 0, 0, 1, 2, 3, 1, 0, 0, 1, 2, 0, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 0, 4, 1, 0, 3, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 2, 3, 4, 1, 0, 0, 0, 5, 1, 2, 0, 0, 0, 1, 0, 3, 0, 0, 1, 2, 0, 4, 0, 1, 0, 0, 0, 0, 1, 2, 3, 0, 5, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Since the trivial partition n is counted, so T(n,1) = 1.

This is an irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k's interleaved with k-1 zeros, and the first element of column k is in row k^2.

Conjecture: row sums give A066839.

LINKS

Table of n, a(n) for n=1..105.

FORMULA

T(n,k) = k*A303300(n,k).

EXAMPLE

Triangle begins (rows 1..25):

1;

1;

1;

1, 2;

1, 0;

1, 2;

1, 0;

1, 2;

1, 0, 3;

1, 2, 0;

1, 0, 0;

1, 2, 3;

1, 0, 0;

1, 2, 0;

1, 0, 3;

1, 2, 0, 4;

1, 0, 0, 0;

1, 2, 3, 0;

1, 0, 0, 0;

1, 2, 0, 4;

1, 0, 3, 0;

1, 2, 0, 0;

1, 0, 0, 0;

1, 2, 3, 4;

1, 0, 0, 0, 5;

...

For n = 16 there are three partitions of 16 into consecutive parts that differ by 2, including 16 as a partition. They are [16], [9, 7] and [7, 5, 3, 1]. The number of parts of these partitions are 1, 2 and 4 respectively, so the 16th row of the triangle is [1, 2, 0, 4].

CROSSREFS

Cf. A000290, A066839, A237048, A303300.

Other triangles of the same family are A127093 and A285914.

Sequence in context: A286320 A330888 A194525 * A282938 A065368 A010751

Adjacent sequences:  A330463 A330464 A330465 * A330467 A330468 A330469

KEYWORD

nonn,tabf

AUTHOR

Omar E. Pol, Apr 30 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 22:41 EDT 2021. Contains 346488 sequences. (Running on oeis4.)