login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).
7

%I #9 May 09 2021 03:32:29

%S 1,1,4,20,80,384,1600,7424,30720,143360,593920,2703360,11403264,

%T 51118080,214958080,965738496,4047503360,17951621120,76168560640,

%U 334202142720,1411970498560,6211596451840,26203595472896,114246130073600,484815908372480,2101441598586880,8896148580335616

%N Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).

%F a(n) = Sum_{k=0..A003056(n)} q(n,k) * 4^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.

%F a(n) ~ (-polylog(2, -1/4))^(1/4) * 4^n * exp(2*sqrt(-polylog(2, -1/4)*n)) / (2*sqrt(5*Pi/4)*n^(3/4)). - _Vaclav Kotesovec_, May 09 2021

%t nmax = 26; CoefficientList[Series[Product[(1 + 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%t Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 4^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 26}]

%o (PARI) seq(n)={Vec(prod(k=1, n, 1 + 4^(k-1)*x^k + O(x*x^n)))} \\ _Andrew Howroyd_, May 08 2021

%Y Cf. A003056, A008289, A261568, A304961, A338673, A340103, A344062, A344064, A344065, A344066, A344067, A344068.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, May 08 2021