login
Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672.
5

%I #10 Sep 13 2016 00:22:48

%S 4,0,1,4,-4,1,0,9,-6,1,4,-16,20,-8,1,0,25,-50,35,-10,1,4,-36,105,-112,

%T 54,-12,1,0,49,-196,294,-210,77,-14,1,4,-64,336,-672,660,-352,104,-16,

%U 1,0,81,-540,1386,-1782,1287,-546,135,-18,1,4,-100,825,-2640,4290,-4004,2275,-800,170,-20,1

%N Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672.

%C The monic integer T-polynomials, called R(n,x) (in Abramowitz-Stegun C(n,x)), with their coefficient triangle given in A127672, when squared, become polynomials in y=x^2:

%C R(n,x)^2 = sum(T(n,k)*y^k,m=0..n).

%C R(n,x)^2 = 2 + R(2*n,x). From the bisection of the R-(or T-)polynomials, the even part. Directly from the R(m*n,x)=R(m,R(n,x)) property for m=2.

%C The o.g.f. is G(z,y) := sum((R(n,sqrt(y))^2)*z^n ,n=0..infinity) = (4 + (4 - 3*y)*z + y*z^2)/((1 +(2-y)*z + z^2)*(1-z)). From the bisection.

%C The o.g.f.s of the columns k>=1 are x^k*(1-x)/(1+x)^(2*k+1),

%C and for k=0 the o.g.f. is 4/(1-x^2).

%C Hetmaniok et al. (2015) refer to these as "modified Chebyshev" polynomials. - _N. J. A. Sloane_, Sep 13 2016

%D E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.

%F T(n,k) = [x^(2*k)]R(n,x)^2, with R(n,x) the monic integer version of the Chebyshev T(n,x) polynomial.

%F T(n,k) = 0 if n<k, T(0,0) = 4, T(n,k) = 2*[k=0] + 2*n*(-1)^(n-k)*binomial(n+k,n-k)/(n+k), n>=1. ([k=0] means 1 if k=0 else 0).

%e The triangle begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 10

%e 0: 4

%e 1: 0 1

%e 2: 4 -4 1

%e 3: 0 9 -6 1

%e 4: 4 -16 20 -8 1

%e 5: 0 25 -50 35 -10 1

%e 6: 4 -36 105 -112 54 -12 1

%e 7: 0 49 -196 294 -210 77 -14 1

%e 8: 4 -64 336 -672 660 -352 104 -16 1

%e 9: 0 81 -540 1386 -1782 1287 -546 135 -18 1

%e 10: 4 -100 825 -2640 4290 -4004 2275 -800 170 -20 1

%e ...

%e n=2: R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2.

%e n=3: R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2.

%e T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16.

%e T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4.

%e T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1.

%e T(n,2) = (-1)^n*A002415(n), n >= 0.

%e T(n,3) = -(-1)^n*A040977(n-3), n >= 3.

%e T(n,4) = (-1)^n*A053347(n-4), n >= 4.

%e T(n,5) = -(-1)^n*A054334(n-5), n >= 5.

%Y Cf. A127672, A158454 (square of S-polynomials), A128495 (sum of square of S-polynomials).

%K sign,easy,tabl

%O 0,1

%A _Wolfdieter Lang_, Oct 17 2012