The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217472 Coefficient table for polynomials used for the formula of partial sums of odd powers of even-indexed Fibonacci numbers. 4
 1, -3, 1, 25, -15, 4, -553, 455, -224, 44, 32220, -32664, 22500, -8316, 1276, -4934996, 5825600, -5028452, 2640220, -771980, 96976, 1985306180, -2636260484, 2688531560, -1791505144, 751934040, -181539072, 19298224, -2096543510160, 3060180107600, -3555908800752, 2830338574800, -1521052125120, 530958146400, -109131456720, 10054374704 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The following formula is due to Ozeki (see the reference, Theorem 2, p. 109) and also to Prodinger (see the reference, p. 207). Here the version of Prodinger is given which coincides with the one of Ozeki (up to a misprint P instead of 1 in the latter).   sum(F(2*k)^(2*m+1),k=0..n) =  sum(lambda(m,l)*F(2*n+1)^(2*l+1),l=0..m) + C(m), m>=0, n>= 0, with F=A000045 (Fibonacci), L=A000032 (Lucas),   lambda(m,l) = (-5)^(l-m)* sum(binomial(2*m+1,j)*binomial(m-j+l,m-j-l)* (2*(m-j)+1)/L(2*(m-j)+1) ,j=0..m-l)/(2*l+1) and   C(m) = (1/5^m)*sum((-1)^(j-1)* binomial(2*m+1,j)*F(2*(m-j)+1)/L(2*(m-j)+1),j=0..m). In order to have an integer triangle T(m,l) instead of the rational lambda(m,l) one uses the sequence pL(m) = product(L(2*i+1),i=0..m), m >= 0, given in A217473, with T(m,l) = pL(m)*lambda(m,l). Similarly, c(m) = pL(m)*C(m) gives the integer sequence A217474 = [-1, 2, -14, 278, -15016, 2172632, -835765304, 851104689248, ...]. Thus, pL(m)*sum(F(2*k)^(2*m+1),k=0..n) =  sum(T(m,l)*F(2*n+1)^(2*l+1),l=0..m) + c(m), m >= 0, n >= 0. For Melham's conjecture on  pL(m)*sum(F(2*k)^(2*m+1),k=0..n) see A217475 where also the reference is given. LINKS K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110. H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 2008/2009), no. 3, 207-215. FORMULA T(m,l) = pL(m)*lambda(m,l), m >= 0, l = 0..m, with pL(m) = A217473(m) and lambda(m,l) given in a comment above. EXAMPLE The triangle T(m,l) begins: m\l        0        1         2        3        4      5  ... 0:         1 1:        -3        1 2:        25      -15         4 3:      -553      455      -224       44 4:     32220   -32664     22500    -8316     1276 5:  -4934996  5825600  -5028452  2640220  -771980  96976 ... row 6:  1985306180   -2636260484   2688531560   -1791505144   751934040   -181539072    19298224. row 7: -2096543510160  3060180107600 -3555908800752 2830338574800  -1521052125120  530958146400  -109131456720 10054374704. m=0: 1*sum(F(2*k)^1,k=0..n) = 1*F(2*n+1)^1  - 1, the last term comes from c(0) = A217474 = -1. See A027941. m=1: 1*4*sum(F(2*k)^3,k=0..n) = -3*F(2*n+1)^1 +1*F(2*n+1)^3  +  2. See 4*A163198. m=2: 1*4*11*sum(F(2*k)^5,k=0..n) = 25*F(2*n+1)^1 - 15*F(2*n+1)^3 + 4*F(2*n+1)^5 - 14. See 44*A217471. CROSSREFS Cf. A217474, A217475. Sequence in context: A259208 A332411 A104033 * A156654 A098815 A300457 Adjacent sequences:  A217469 A217470 A217471 * A217473 A217474 A217475 KEYWORD sign,easy,tabl AUTHOR Wolfdieter Lang, Oct 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 23:42 EDT 2021. Contains 347673 sequences. (Running on oeis4.)