login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363736
a(n) = (n-1)! * Sum_{d|n} (-1)^(d+1) / (d-1)!.
1
1, 0, 3, -1, 25, 59, 721, -841, 60481, 15119, 3628801, 12972959, 479001601, 8648639, 134399865601, -218205187201, 20922789888001, 174888473759999, 6402373705728001, -15205972772390401, 3652732042831872001, 14079294028799, 1124000727777607680001
OFFSET
1,3
FORMULA
E.g.f.: Sum_{k>0} (1 - exp(-x^k))/k.
E.g.f.: Sum_{k>0} (-1)^k * log(1-x^k)/k!.
If p is an odd prime, a(p) = 1 + (p-1)!.
MATHEMATICA
a[n_] := (n-1)! * DivisorSum[n, (-1)^(#+1)/(#-1)! &]; Array[a, 25] (* Amiram Eldar, Jul 03 2023 *)
PROG
(PARI) a(n) = (n-1)!*sumdiv(n, d, (-1)^(d+1)/(d-1)!);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 18 2023
STATUS
approved