login
A363736
a(n) = (n-1)! * Sum_{d|n} (-1)^(d+1) / (d-1)!.
1
1, 0, 3, -1, 25, 59, 721, -841, 60481, 15119, 3628801, 12972959, 479001601, 8648639, 134399865601, -218205187201, 20922789888001, 174888473759999, 6402373705728001, -15205972772390401, 3652732042831872001, 14079294028799, 1124000727777607680001
OFFSET
1,3
FORMULA
E.g.f.: Sum_{k>0} (1 - exp(-x^k))/k.
E.g.f.: Sum_{k>0} (-1)^k * log(1-x^k)/k!.
If p is an odd prime, a(p) = 1 + (p-1)!.
MATHEMATICA
a[n_] := (n-1)! * DivisorSum[n, (-1)^(#+1)/(#-1)! &]; Array[a, 25] (* Amiram Eldar, Jul 03 2023 *)
PROG
(PARI) a(n) = (n-1)!*sumdiv(n, d, (-1)^(d+1)/(d-1)!);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 18 2023
STATUS
approved