login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363735
a(n) = Sum_{k=0..n} n^notdivides(k, n), where notdivides(k, n) = 0 if k divides n, otherwise 1.
5
1, 2, 4, 8, 11, 22, 22, 44, 44, 66, 74, 112, 90, 158, 158, 184, 197, 274, 240, 344, 306, 382, 422, 508, 416, 578, 602, 652, 650, 814, 698, 932, 870, 994, 1058, 1124, 1017, 1334, 1334, 1408, 1328, 1642, 1478, 1808, 1722, 1806, 1982, 2164, 1882, 2306, 2256, 2452
OFFSET
0,2
LINKS
FORMULA
a(n) = (1 - n) * tau(n) + n * (1 + n) for n >= 1, where tau = A000005.
a(n) + A363734(n) = (n + 1)^2.
a(n) - A363734(n) = A363421(n).
MATHEMATICA
A363735[n_]:=If[n==0, 1, n(n+1)+(1-n)DivisorSigma[0, n]]; Array[A363735, 100, 0] (* Paolo Xausa, Aug 06 2023 *)
PROG
(SageMath)
print([sum(n^(not k.divides(n)) for k in srange(n + 1)) for n in srange(52)])
(Python)
from sympy import divisor_count
def A363735(n): return n*(n+1)-(n-1)*divisor_count(n) if n else 1 # Chai Wah Wu, Jun 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 27 2023
STATUS
approved