|
|
A090872
|
|
a(n) is the smallest number m greater than 1 such that m^(2^k)+1 for k=0,1,...,n are primes.
|
|
10
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The first five terms of this sequence correspond to Fermat primes.
|
|
LINKS
|
Table of n, a(n) for n=0..7.
PrimeGrid, Generalized Fermat Progression Search
Carlos Rivera, Puzzle 137. Product of primes + 1, a square, The Prime Puzzles and Problems Connection.
Carlos Rivera (ed.), Prime Puzzle # 399, The Prime Puzzles and Problems Connection.
|
|
EXAMPLE
|
a(5)=7072833120 because 7072833120^2^k+1 for k=0,1,2,3,4,5 are primes.
|
|
CROSSREFS
|
Cf. A019434, A000215.
Cf. A090873-A090875.
All solutions for fixed n: A006093 (n=0), A070689 (n=1), A070325 (n=2), A070655 (n=3), A070694 (n=4), A235390 (n=5), A335805 (n=6), A337364 (n=7).
Sequence in context: A067089 A339027 A343121 * A283472 A225538 A212355
Adjacent sequences: A090869 A090870 A090871 * A090873 A090874 A090875
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Farideh Firoozbakht, Jan 31 2004
|
|
EXTENSIONS
|
a(6) from Jens Kruse Andersen, May 06 2007
a(7) from Kellen Shenton, Aug 13 2020
|
|
STATUS
|
approved
|
|
|
|