|
|
A335805
|
|
Numbers b such that b^(2^i) + 1 is prime for i = 0...6.
|
|
4
|
|
|
1, 2072005925466, 5082584069416, 12698082064890, 29990491969260, 46636691707050, 65081025897426, 83689703895606, 83953213480290, 105003537341346, 105699143244090, 107581715369910, 111370557491826, 111587899569066, 128282713771996, 133103004825210
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Explicitly, for each b, the seven numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, and b^64+1 must be primes (generalized Fermat primes).
The first term greater than 1 such that b^(2^7) + 1 is also prime, is 240164550712338756, see A337364. - Jeppe Stig Nielsen, Aug 25 2020
|
|
LINKS
|
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..4603 (up to a(n) = A337364(2), calculated by Kellen Shenton)
Yves Gallot, GFP (Generalized Fermat Progressions) / gfp7, software for calculating this sequence.
|
|
CROSSREFS
|
Cf. A006093, A019434, A056993, A070325, A070655, A070689, A070694, A090872, A235390.
Sequence in context: A272518 A246233 A234053 * A032756 A234073 A026081
Adjacent sequences: A335802 A335803 A335804 * A335806 A335807 A335808
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jeppe Stig Nielsen, Aug 14 2020
|
|
STATUS
|
approved
|
|
|
|