login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225539 Numbers n where 2^n and n have the same digital root. 0
5, 16, 23, 34, 41, 52, 59, 70, 77, 88, 95, 106, 113, 124, 131, 142, 149, 160, 167, 178, 185, 196, 203, 214, 221, 232, 239, 250, 257, 268, 275, 286, 293, 304, 311, 322, 329, 340, 347, 358, 365, 376, 383, 394, 401, 412, 419, 430, 437, 448 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The digital roots of n have a cycle length of 9 (A010888) and the digital roots of 2^n have a cycle length of 6 (A153130). Therefore, if n is a term so is n+18.
The only values of the digital roots of a(n) are 5 and 7 (A010718).
LINKS
FORMULA
a(n) = 9*n - 3 + (-1)^n.
a(n) = a(n-1) + 7 (odd n), a(n) = a(n-1) + 11 (even n) with a(1) = 5.
G.f. x*(5 + 11*x + 2*x^2) / ((1-x)^2 * (1+x)). - Joerg Arndt, May 17 2013
EXAMPLE
For n=23, the digital root of n is 5. 2^n equals 8388608 so the digital root of 2^n is 5 as well.
MATHEMATICA
digitalRoot[n_] := Module[{r = n}, While[r > 9, r = Total[IntegerDigits[ r]]]; r]; Select[Range[448], digitalRoot[2^#] == digitalRoot[#] &] (* T. D. Noe, May 19 2013 *)
LinearRecurrence[{1, 1, -1}, {5, 16, 23}, 60] (* Harvey P. Dale, Dec 29 2018 *)
PROG
(PARI) forstep(n=16, 500, [7, 11], print1(n", ")) \\ Charles R Greathouse IV, May 19 2013
CROSSREFS
Sequence in context: A042603 A031120 A029450 * A299124 A278415 A063243
KEYWORD
nonn,base,easy
AUTHOR
Marcus Hedbring, May 17 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 11:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)