login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225539
Numbers n where 2^n and n have the same digital root.
0
5, 16, 23, 34, 41, 52, 59, 70, 77, 88, 95, 106, 113, 124, 131, 142, 149, 160, 167, 178, 185, 196, 203, 214, 221, 232, 239, 250, 257, 268, 275, 286, 293, 304, 311, 322, 329, 340, 347, 358, 365, 376, 383, 394, 401, 412, 419, 430, 437, 448
OFFSET
1,1
COMMENTS
The digital roots of n have a cycle length of 9 (A010888) and the digital roots of 2^n have a cycle length of 6 (A153130). Therefore, if n is a term so is n+18.
The only values of the digital roots of a(n) are 5 and 7 (A010718).
FORMULA
a(n) = 9*n - 3 + (-1)^n.
a(n) = a(n-1) + 7 (odd n), a(n) = a(n-1) + 11 (even n) with a(1) = 5.
G.f. x*(5 + 11*x + 2*x^2) / ((1-x)^2 * (1+x)). - Joerg Arndt, May 17 2013
EXAMPLE
For n=23, the digital root of n is 5. 2^n equals 8388608 so the digital root of 2^n is 5 as well.
MATHEMATICA
digitalRoot[n_] := Module[{r = n}, While[r > 9, r = Total[IntegerDigits[ r]]]; r]; Select[Range[448], digitalRoot[2^#] == digitalRoot[#] &] (* T. D. Noe, May 19 2013 *)
LinearRecurrence[{1, 1, -1}, {5, 16, 23}, 60] (* Harvey P. Dale, Dec 29 2018 *)
PROG
(PARI) forstep(n=16, 500, [7, 11], print1(n", ")) \\ Charles R Greathouse IV, May 19 2013
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Marcus Hedbring, May 17 2013
STATUS
approved