login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073138 Largest number having in its binary representation the same number of 0's and 1's as n. 23
0, 1, 2, 3, 4, 6, 6, 7, 8, 12, 12, 14, 12, 14, 14, 15, 16, 24, 24, 28, 24, 28, 28, 30, 24, 28, 28, 30, 28, 30, 30, 31, 32, 48, 48, 56, 48, 56, 56, 60, 48, 56, 56, 60, 56, 60, 60, 62, 48, 56, 56, 60, 56, 60, 60, 62, 56, 60, 60, 62, 60, 62, 62, 63, 64, 96, 96, 112, 96, 112, 112 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
From Trevor Green (green(AT)snoopy.usask.ca), Nov 26 2003: (Start)
a(n)/n has an accumulation point at x exactly when x is in the interval [1, 2]. Proof: Clearly n <= a(n) < 2n. Let b(n) = a(n)/n, then b(n) must always lie in [1,2) and all the accumulation points of the sequence must lie in [1,2]. We shall show that every such number is an accumulation point.
First, consider any d-bit integer n. Suppose that z of these bits are 0. Let n' be the (d+z)-bit integer whose first d bits are the same as those of n and whose remaining bits are all 1. Then a(n') will have to be the (d+z)-bit integer whose first d bits are all 1 and whose last z bits are all 0.
Thus n' = (n+1)*2^z-1; a(n') = (2^d-1)2^z; and b(n') = (2^d-1)/(n+1) + epsilon, where 0 < epsilon < 2^(1-d). So to get an accumulation point x, we just choose n(d) to be the d-bit integer such that (2^d-1)/(n(d)+1) < x <= (2^d-1)/n(d), or equivalently, n(d) = floor((2^d-1)/x). If x lies in [1,2), then n(d) will always be a d-bit number for sufficiently large d.
Then n'(d) yields an increasing subsequence of the integers for which b(n'(d)) converges to x. For x = 2, choose n(d) = 2^(d-1), which is always a d-bit number; then b(n'(d)) = (2^d-1)/(2^(d-1)+1) + epsilon = 2 + epsilon', where epsilon' also heads for 0 as d blows up. This proves the claim.
(End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..8191 (terms 0..1023 from T. D. Noe)
FORMULA
a(n+1) = a(floor(n/2))*2 + (n mod 2)*(2^floor(log_2(n)) - a(floor(n/2))); a(0)=0.
A023416(a(n)) = A023416(n), A000120(a(n)) = A000120(n).
a(0)=0, a(1)=1, a(2n) = 2a(n), a(2n+1) = a(n) + 2^floor(log_2(n)). - Ralf Stephan, Oct 05 2003
a(n) = 2^(floor(log_2(n)) + 1) * (1 - 2^(-d(n))) where d(n) = digit sum of base-2 expansion of n. - Trevor G. Hyde (thyde12(AT)amherst.edu), Jul 14 2008
a(n) = A038573(n) * A080100(n). - Reinhard Zumkeller, Jan 16 2012
EXAMPLE
a(20)=24, as 20='10100' and 24 is the greatest number having two 1's and three 0's: 17='10001', 18='10010', 20='10100' and 24='11000'.
MAPLE
a:= n-> Bits[Join](sort(Bits[Split](n))):
seq(a(n), n=0..100); # Alois P. Heinz, Jun 26 2021
MATHEMATICA
f[n_] := Module[{idn=IntegerDigits[n, 2], o, l}, l=Length[idn]; o=Count[idn, 1]; FromDigits[Join[Table[1, {o}], Table[0, {l-o}]], 2]]; Table[f[i], {i, 0, 70}]
ln[n_] := Module[{idn=IntegerDigits[n, 2], len, zer}, len=Length[idn]; zer=Count[idn, 0]; FromDigits[Join[Table[1, {len-zer}], Table[0, {zer}]], 2]]; Table[ln[i], {i, 0, 70}]
a[z_] := 2^(Floor[Log[2, z]] + 1) * (1 - 2^(-Sum[k, {k, IntegerDigits[n, 2]}])) Column[Table[a[p], {p, 500}], Right] (* Trevor G. Hyde (thyde12(AT)amherst.edu), Jul 14 2008 *)
Table[FromDigits[ReverseSort[IntegerDigits[n, 2]], 2], {n, 0, 70}] (* Harvey P. Dale, Mar 13 2023 *)
PROG
(Haskell)
a073138 n = a038573 n * a080100 n -- Reinhard Zumkeller, Jan 16 2012
(PARI) a(n) = fromdigits(vecsort(binary(n), , 4), 2); \\ Michel Marcus, Sep 26 2018
(Python)
def a(n): return int("".join(sorted(bin(n)[2:], reverse=True)), 2)
print([a(n) for n in range(71)]) # Michael S. Branicky, Jun 27 2021
CROSSREFS
Cf. A030109.
Cf. A038573.
Decimal equivalent of A221714. - N. J. A. Sloane, Jan 26 2013
Sequence in context: A246593 A256999 A331857 * A342179 A362813 A367964
KEYWORD
nonn,nice,look
AUTHOR
Reinhard Zumkeller, Jul 16 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 00:30 EDT 2024. Contains 371917 sequences. (Running on oeis4.)