login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073138
Largest number having in its binary representation the same number of 0's and 1's as n.
23
0, 1, 2, 3, 4, 6, 6, 7, 8, 12, 12, 14, 12, 14, 14, 15, 16, 24, 24, 28, 24, 28, 28, 30, 24, 28, 28, 30, 28, 30, 30, 31, 32, 48, 48, 56, 48, 56, 56, 60, 48, 56, 56, 60, 56, 60, 60, 62, 48, 56, 56, 60, 56, 60, 60, 62, 56, 60, 60, 62, 60, 62, 62, 63, 64, 96, 96, 112, 96, 112, 112
OFFSET
0,3
COMMENTS
From Trevor Green (green(AT)snoopy.usask.ca), Nov 26 2003: (Start)
a(n)/n has an accumulation point at x exactly when x is in the interval [1, 2]. Proof: Clearly n <= a(n) < 2n. Let b(n) = a(n)/n, then b(n) must always lie in [1,2) and all the accumulation points of the sequence must lie in [1,2]. We shall show that every such number is an accumulation point.
First, consider any d-bit integer n. Suppose that z of these bits are 0. Let n' be the (d+z)-bit integer whose first d bits are the same as those of n and whose remaining bits are all 1. Then a(n') will have to be the (d+z)-bit integer whose first d bits are all 1 and whose last z bits are all 0.
Thus n' = (n+1)*2^z-1; a(n') = (2^d-1)2^z; and b(n') = (2^d-1)/(n+1) + epsilon, where 0 < epsilon < 2^(1-d). So to get an accumulation point x, we just choose n(d) to be the d-bit integer such that (2^d-1)/(n(d)+1) < x <= (2^d-1)/n(d), or equivalently, n(d) = floor((2^d-1)/x). If x lies in [1,2), then n(d) will always be a d-bit number for sufficiently large d.
Then n'(d) yields an increasing subsequence of the integers for which b(n'(d)) converges to x. For x = 2, choose n(d) = 2^(d-1), which is always a d-bit number; then b(n'(d)) = (2^d-1)/(2^(d-1)+1) + epsilon = 2 + epsilon', where epsilon' also heads for 0 as d blows up. This proves the claim.
(End)
FORMULA
a(n+1) = a(floor(n/2))*2 + (n mod 2)*(2^floor(log_2(n)) - a(floor(n/2))); a(0)=0.
A023416(a(n)) = A023416(n), A000120(a(n)) = A000120(n).
a(0)=0, a(1)=1, a(2n) = 2a(n), a(2n+1) = a(n) + 2^floor(log_2(n)). - Ralf Stephan, Oct 05 2003
a(n) = 2^(floor(log_2(n)) + 1) * (1 - 2^(-d(n))) where d(n) = digit sum of base-2 expansion of n. - Trevor G. Hyde (thyde12(AT)amherst.edu), Jul 14 2008
a(n) = A038573(n) * A080100(n). - Reinhard Zumkeller, Jan 16 2012
n <= a(n) < 2n. - Charles R Greathouse IV, Aug 07 2024
EXAMPLE
a(20)=24, as 20='10100' and 24 is the greatest number having two 1's and three 0's: 17='10001', 18='10010', 20='10100' and 24='11000'.
MAPLE
a:= n-> Bits[Join](sort(Bits[Split](n))):
seq(a(n), n=0..100); # Alois P. Heinz, Jun 26 2021
MATHEMATICA
f[n_] := Module[{idn=IntegerDigits[n, 2], o, l}, l=Length[idn]; o=Count[idn, 1]; FromDigits[Join[Table[1, {o}], Table[0, {l-o}]], 2]]; Table[f[i], {i, 0, 70}]
ln[n_] := Module[{idn=IntegerDigits[n, 2], len, zer}, len=Length[idn]; zer=Count[idn, 0]; FromDigits[Join[Table[1, {len-zer}], Table[0, {zer}]], 2]]; Table[ln[i], {i, 0, 70}]
a[z_] := 2^(Floor[Log[2, z]] + 1) * (1 - 2^(-Sum[k, {k, IntegerDigits[n, 2]}])) Column[Table[a[p], {p, 500}], Right] (* Trevor G. Hyde (thyde12(AT)amherst.edu), Jul 14 2008 *)
Table[FromDigits[ReverseSort[IntegerDigits[n, 2]], 2], {n, 0, 70}] (* Harvey P. Dale, Mar 13 2023 *)
PROG
(Haskell)
a073138 n = a038573 n * a080100 n -- Reinhard Zumkeller, Jan 16 2012
(PARI) a(n) = fromdigits(vecsort(binary(n), , 4), 2); \\ Michel Marcus, Sep 26 2018
(Python)
def a(n): return int("".join(sorted(bin(n)[2:], reverse=True)), 2)
print([a(n) for n in range(71)]) # Michael S. Branicky, Jun 27 2021
CROSSREFS
Cf. A030109.
Cf. A038573.
Decimal equivalent of A221714. - N. J. A. Sloane, Jan 26 2013
Sequence in context: A246593 A256999 A331857 * A342179 A362813 A367964
KEYWORD
nonn,nice,look,easy
AUTHOR
Reinhard Zumkeller, Jul 16 2002
STATUS
approved