login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169945
Consider the 2^(n+1) polynomials f(x) with coefficients 0 or 1 and degree <= n. Sequence gives triangle read by rows, in which T(n,k) (n>=0) is the number of such polynomials of thickness k (0 <= k <= n+1).
4
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 2, 1, 1, 5, 16, 6, 3, 1, 1, 6, 29, 14, 11, 2, 1, 1, 7, 49, 29, 29, 9, 3, 1, 1, 8, 82, 52, 74, 22, 14, 2, 1, 1, 9, 130, 96, 160, 58, 42, 12, 3, 1, 1, 10, 205, 160, 344, 128, 126, 30, 17, 2, 1, 1, 11, 305, 277, 676, 294, 314, 98, 53, 15, 3, 1
OFFSET
0,4
COMMENTS
The thickness of a polynomial f(x) is the magnitude of the largest coefficient in the expansion of f(x)^2.
FORMULA
Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
EXAMPLE
Triangle begins:
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 8, 2, 1]
[1, 5, 16, 6, 3, 1]
[1, 6, 29, 14, 11, 2, 1]
[1, 7, 49, 29, 29, 9, 3, 1]
[1, 8, 82, 52, 74, 22, 14, 2, 1]
[1, 9, 130, 96, 160, 58, 42, 12, 3, 1]
[1, 10, 205, 160, 344, 128, 126, 30, 17, 2, 1]
[1, 11, 305, 277, 676, 294, 314, 98, 53, 15, 3, 1]
[1, 12, 450, 450, 1333, 576, 796, 232, 185, 38, 20, 2, 1]
[1, 13, 654, 712, 2477, 1177, 1796, 628, 501, 147, 64, 18, 3, 1]
[1, 14, 947, 1086, 4563, 2212, 4075, 1370, 1425, 368, 251, 46, 23, 2, 1]
[1, 15, 1343, 1657, 7997, 4289, 8535, 3265, 3515, 1117, 729, 205, 75, 21, 3, 1]
...
For n=2 the eight polynomials and their squares are:
0, 0
1, 1
x, x^2
x+1, x^2+2*x+1
x^2, x^4
x^2+1, x^4+2*x^2+1
x^2+x, x^4+2*x^3+x^2
x^2+x+1, x^4+2*x^3+3*x^2+2*x+1
Their thicknesses are respectively 0,1,1,2,1,2,2,3, so T(2,0)=1, T(2,1)=T(2,2)=3, T(2,3)=1.
Contribution from R. J. Mathar, Aug 02 2010: (Start)
1 16 1902 2448 14044 7686 17976 6728 8918 2586 2290 532 326 54 26 2 1
1 17 2648 3636 23784 13932 35810 14690 20444 6928 6008 1798 990 272 86 24 3 1
1 18 3675 5280 40196 24032 71374 29056 47604 15326 16590 4380 3384 724 410 62 29 2 1
1 19 5015 7635 66066 42072 135876 59854 103298 37122 40660 12868 9346 2690 1290 348 97 27 3 1
1 20 6824 10840 108419 70782 258898 114262 226282 78760 102664 29858 27848 6814 4752 944 503 70 32 2 1
1 21 9166 15392 173675 120003 476494 224180 469816 178278 237956 78854 71902 21692 13698 3824 1625 433 108 30 3 1
1 22 12343 21372 278183 196784 877315 414774 981244 364690 562404 176422 194486 52356 43592 9996 6407 1192 605 78 35 2 1 (End)
MATHEMATICA
pols[n_] := x^Range[0, n].#& /@ Tuples[{0, 1}, n+1];
row[n_] := Tally[Max /@ CoefficientList[pols[n]^2, x]][[All, 2]];
Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Aug 27 2019 *)
CROSSREFS
Related to thickness: A169940-A169954, A061909.
3rd column gives A143823(n+1)-n-2. - Alois P. Heinz, Sep 16 2011
Sequence in context: A196863 A196922 A135597 * A073134 A300260 A026692
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Aug 01 2010
STATUS
approved