login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169948
Fourth entry in row n of triangle in A169945.
1
1, 2, 6, 14, 29, 52, 96, 160, 277, 450, 712, 1086, 1657, 2448, 3636, 5280, 7635, 10840, 15392, 21372, 29655, 40580, 55282, 74620, 100651, 134232, 178922, 236488, 312019, 408550, 534288, 692978, 897931, 1156256, 1485650, 1897704, 2421635, 3071608, 3894042
OFFSET
2,2
COMMENTS
Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
FORMULA
a(n) = A196723(n+1) - A143823(n+1). - Andrew Howroyd, Jul 09 2017
MATHEMATICA
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] + sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]];
A196723[n_] := A196723[n] = b[n - 1, {n}] + If[n == 0, 0, A196723[n - 1]];
c[n_, s_] := c[n, s] = Module[{sn, m}, If[n < 1, 1, sn = Append[s, n]; m = Length[sn]; If[m*(m - 1)/2 == Length[Table[sn[[i]] - sn[[j]], {i, 1, m - 1}, {j, i + 1, m}] // Flatten // Union], c[n - 1, sn], 0] + c[n-1, s]]];
A143823[n_] := A143823[n] = c[n - 1, {n}] + If[n == 0, 0, A143823[n - 1]];
a[n_] := a[n] = A196723[n + 1] - A143823[n + 1];
Table[Print[n, " ", a[n]]; a[n], {n, 2, 40}] (* Jean-François Alcover, Aug 27 2019, after Alois P. Heinz in A196723 and A143823 *)
CROSSREFS
Related to thickness: A169940-A169954, A061909.
Sequence in context: A337106 A321027 A214907 * A192705 A123991 A112511
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 01 2010
EXTENSIONS
a(15)-a(28) from Nathaniel Johnston, Nov 12 2010
a(29)-a(40) from Andrew Howroyd, Jul 09 2017
STATUS
approved