login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.
3

%I #18 Jan 05 2025 19:51:37

%S 1,1,1,0,2,1,-1,3,3,1,-1,4,8,4,1,0,5,21,15,5,1,1,6,55,56,24,6,1,1,7,

%T 144,209,115,35,7,1,0,8,377,780,551,204,48,8,1,-1,9,987,2911,2640,

%U 1189,329,63,9,1,-1,10,2584,10864,12649,6930,2255,496,80,10,1,0,11,6765,40545,60605,40391,15456,3905,711,99,11,1,1,12

%N Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.

%H Shmuel T. Klein, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/29-2/klein.pdf">Combinatorial Representation of Generalized Fibonacci Numbers</a>, Fib. Quarterly 29 (2) (1991) 124-131, variable U_n^m. [From _R. J. Mathar_, Feb 19 2010]

%F T(n, k) = A073133(n, k)-2*A073135(n, k-2).

%F T(n, k) = Sum_{j=0..k-1} A049310(k-1, j)*n^j.

%e Rows start:

%e 1, 1, 0, -1, -1, 0, 1, ...;

%e 1, 2, 3, 4, 5, 6, 7, ...;

%e 1, 3, 8, 21, 55, 144, 377, ...;

%e 1, 4, 15, 56, 209, 780, 2911, ...;

%e ...

%o (PARI) T(n,k) = sum(j=0,k-1,A049310(k-1,j)*n^j) \\ _Jason Yuen_, Aug 20 2024

%Y Rows include A010892, A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190. Columns include (with some gaps) A000012, A000027, A005563, A057722.

%Y Cf. A094954.

%K sign,tabl,changed

%O 1,5

%A _Henry Bottomley_, Jul 16 2002