OFFSET
1,1
COMMENTS
This sequence and A002144 give rise to a class of monic polynomials x^2 + bx + c where b = +- A002144(n) and c = +- a(n)/4 that will factor over the integers regardless of the sign of c. For example, x^2 - 13x - 30 and x^2 - 13x + 30 are two such polynomials. Further polynomials with this property can be found by transforming the roots.
EXAMPLE
a(2) = 120 and A002144(2) = 13. 13^2 - 120 = 7^2 and 13^2 + 120 = 17^2.
PROG
(PARI) getpr(n) = {nb = 0; p = 2; while (nb != n, p = nextprime(p+1); if ((p % 4) == 1, nb++); ); p; }
a(n) = {p = getpr(n); psq = p^2; k = 1; while (!issquare(psq+k) || !issquare(psq-k), if (k>psq, k = 0; break); k++; ); k; } \\ Michel Marcus, Sep 25 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
EXTENSIONS
Definition corrected by Zak Seidov, Jul 20 2010
STATUS
approved