login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114198
a(n) = Sum_{k=0..n} binomial(n,k)^2*F(k+1).
2
1, 2, 7, 31, 142, 659, 3113, 14918, 72199, 351983, 1726022, 8504509, 42070429, 208812722, 1039387519, 5186451311, 25935769702, 129942777227, 652133298421, 3277734587302, 16496741964221, 83129076840317, 419362231888882
OFFSET
0,2
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Eric Weisstein's World of Mathematics, Legendre Polynomial.
FORMULA
a(n) = Sum_{k=0..n} C(n, k)^2 * F(k+1); a(n) = A114197(2n, n).
a(n) = (phi^(n-1) * P_n(sqrt(5)-2) - (1-phi)^(n-1) * P_n(-sqrt(5)-2))/sqrt(5), where phi = (1+sqrt(5))/2, P_n(x) is the Legendre polynomial.
a(n) ~ sqrt((6 + 2*sqrt(5) + sqrt(2*(29 + 13*sqrt(5))))/10)/2 * ((3 + sqrt(5))/2 + sqrt(2*(1+sqrt(5))))^n / sqrt(Pi*n). - Vaclav Kotesovec, May 06 2017
a(n) ~ sqrt(2*phi^2 + phi^(7/2)) * (2*phi^(1/2) + phi^2)^n / (2*sqrt(5*Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 22 2017
D-finite with recurrence +n*(n-1)*a(n) -5*n*(n-1)*a(n-1) +2*(-n^2+17*n-27)*a(n-2) +(11*n^2-135*n+270)*a(n-3) +2*(-17*n^2+121*n-215)*a(n-4) +(n-4)*(43*n-191)*a(n-5) -3*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, May 11 2022
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 31][n+1],
((3*(n-1))*(2*n-5)*(13*n^2-26*n+10) *a(n-1)
-(7*n^2-14*n+6)*(13*n^2-52*n+49) *a(n-2)
+(n-2)*(182*n^3-819*n^2+1050*n-351) *a(n-3)
-(n-2)*(n-3)*(13*n^2-26*n+10) *a(n-4))/
(n*(n-1)*(13*n^2-52*n+49)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 28 2016
MATHEMATICA
FullSimplify@Table[(GoldenRatio^(n - 1) LegendreP[n, Sqrt[5] - 2] - (1 - GoldenRatio)^(n - 1) LegendreP[n, -Sqrt[5] - 2])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 28 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 16 2005
STATUS
approved