login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115605 Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4)  / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ). 1
0, 0, 2, 7, 31, 128, 549, 2315, 9826, 41594, 176242, 746496, 3162334, 13395658, 56745250, 240376201, 1018250793, 4313378176, 18271765435, 77400436781, 327873517634, 1388894499108, 5883451527348, 24922700587008 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..23.

Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1,0,1,-3,-6,3,1).

FORMULA

Lim_{n->infinity} a(n+1)/a(n) = phi^3 = A098317.

a(n) = -A000035(n+1)/6 +A061347(n+2)/12 +A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12. - R. J. Mathar, Dec 16 2011

MAPLE

A000035 := proc(n)

        n mod 2 ;

end proc:

A061347 := proc(n)

        op((n mod 3)+1, [-2, 1, 1]) ;

end proc:

A001076 := proc(n)

        option remember;

        if n <=1 then

                n;

        else

                4*procname(n-1)+procname(n-2) ;

        end if;

end proc:

A039834 := proc(n)

        (-1)^(n+1)*combinat[fibonacci](n) ;

end proc:

A087204 := proc(n)

        op((n mod 6)+1, [2, 1, -1, -2, -1, 1]) ;

end proc:

A115605 := proc(n)

        -A000035(n+1)/6 +A061347(n+2)/12 + A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12 ;

end proc: # R. J. Mathar, Dec 16 2011

MATHEMATICA

LinearRecurrence[{3, 6, -3, -1, 0, 1, -3, -6, 3, 1}, {0, 0, 2, 7, 31, 128, 549, 2315, 9826, 41594}, 30] (* Harvey P. Dale, Dec 16 2011 *)

PROG

(PARI) concat([0, 0], Vec((2+x-2*x^2-x^3+2*x^4)/((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)*(x^2+4*x-1)*(x^2-x-1))+O(x^99))) \\ Charles R Greathouse IV, Sep 27 2012

CROSSREFS

Cf. A000045, A079962.

Sequence in context: A059846 A343532 A034698 * A289719 A114198 A055836

Adjacent sequences:  A115602 A115603 A115604 * A115606 A115607 A115608

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Mar 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 21:38 EDT 2021. Contains 348034 sequences. (Running on oeis4.)