login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115605
Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4) / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ).
1
0, 0, 2, 7, 31, 128, 549, 2315, 9826, 41594, 176242, 746496, 3162334, 13395658, 56745250, 240376201, 1018250793, 4313378176, 18271765435, 77400436781, 327873517634, 1388894499108, 5883451527348, 24922700587008
OFFSET
0,3
FORMULA
Lim_{n->infinity} a(n+1)/a(n) = phi^3 = A098317.
a(n) = -A000035(n+1)/6 +A061347(n+2)/12 +A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12. - R. J. Mathar, Dec 16 2011
MAPLE
A000035 := proc(n)
n mod 2 ;
end proc:
A061347 := proc(n)
op((n mod 3)+1, [-2, 1, 1]) ;
end proc:
A001076 := proc(n)
option remember;
if n <=1 then
n;
else
4*procname(n-1)+procname(n-2) ;
end if;
end proc:
A039834 := proc(n)
(-1)^(n+1)*combinat[fibonacci](n) ;
end proc:
A087204 := proc(n)
op((n mod 6)+1, [2, 1, -1, -2, -1, 1]) ;
end proc:
A115605 := proc(n)
-A000035(n+1)/6 +A061347(n+2)/12 + A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12 ;
end proc: # R. J. Mathar, Dec 16 2011
MATHEMATICA
LinearRecurrence[{3, 6, -3, -1, 0, 1, -3, -6, 3, 1}, {0, 0, 2, 7, 31, 128, 549, 2315, 9826, 41594}, 30] (* Harvey P. Dale, Dec 16 2011 *)
PROG
(PARI) concat([0, 0], Vec((2+x-2*x^2-x^3+2*x^4)/((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)*(x^2+4*x-1)*(x^2-x-1))+O(x^99))) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Sequence in context: A059846 A343532 A034698 * A289719 A114198 A349769
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 13 2006
STATUS
approved