login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4) / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ).
1

%I #19 Sep 26 2015 18:29:48

%S 0,0,2,7,31,128,549,2315,9826,41594,176242,746496,3162334,13395658,

%T 56745250,240376201,1018250793,4313378176,18271765435,77400436781,

%U 327873517634,1388894499108,5883451527348,24922700587008

%N Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4) / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ).

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-3,-1,0,1,-3,-6,3,1).

%F Lim_{n->infinity} a(n+1)/a(n) = phi^3 = A098317.

%F a(n) = -A000035(n+1)/6 +A061347(n+2)/12 +A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12. - _R. J. Mathar_, Dec 16 2011

%p A000035 := proc(n)

%p n mod 2 ;

%p end proc:

%p A061347 := proc(n)

%p op((n mod 3)+1,[-2,1,1]) ;

%p end proc:

%p A001076 := proc(n)

%p option remember;

%p if n <=1 then

%p n;

%p else

%p 4*procname(n-1)+procname(n-2) ;

%p end if;

%p end proc:

%p A039834 := proc(n)

%p (-1)^(n+1)*combinat[fibonacci](n) ;

%p end proc:

%p A087204 := proc(n)

%p op((n mod 6)+1,[2,1,-1,-2,-1,1]) ;

%p end proc:

%p A115605 := proc(n)

%p -A000035(n+1)/6 +A061347(n+2)/12 + A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12 ;

%p end proc: # _R. J. Mathar_, Dec 16 2011

%t LinearRecurrence[{3,6,-3,-1,0,1,-3,-6,3,1},{0,0,2,7,31,128,549,2315,9826,41594},30] (* _Harvey P. Dale_, Dec 16 2011 *)

%o (PARI) concat([0,0],Vec((2+x-2*x^2-x^3+2*x^4)/((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)*(x^2+4*x-1)*(x^2-x-1))+O(x^99))) \\ _Charles R Greathouse IV_, Sep 27 2012

%Y Cf. A000045, A079962.

%K nonn,easy

%O 0,3

%A _Roger L. Bagula_, Mar 13 2006