login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219673
a(n) = Sum_{k=0..n} binomial(n,k)^2*Lucas(k) where Lucas(n) = A000032(n).
3
2, 3, 9, 42, 197, 913, 4302, 20611, 99773, 486438, 2385319, 11752931, 58139858, 288572079, 1436398329, 7167499522, 35842352013, 179576501169, 901226053422, 4529717794607, 22797936691207, 114881558737498, 579544350869889, 2926592507364717, 14792448049794122
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Legendre Polynomial.
FORMULA
G.f.: 1/sqrt(1 - (3 + sqrt(5))*x + (3 - sqrt(5))/2*x^2) + 1/sqrt(1 - (3 - sqrt(5))*x + (3 + sqrt(5))/2*x^2).
a(n) ~ (1+sqrt(5))/4*sqrt((6-2*sqrt(5)+sqrt(2*sqrt(5)-2))/(2*Pi*n)) * ((3+sqrt(5))/2+sqrt(2+2*sqrt(5)))^n.
Recurrence (same as for A219672): (n-1)*n*(13*n^2 - 52*n + 49)*a(n) = 3*(n-1)*(2*n-5)*(13*n^2 - 26*n + 10)*a(n-1) - (7*n^2-14*n+6)*(13*n^2 - 52*n + 49)*a(n-2) + (n-2)*(182*n^3 - 819*n^2 + 1050*n - 351)*a(n-3) - (n-3)*(n-2)*(13*n^2 - 26*n + 10)*a(n-4).
a(n) = hypergeom([-n,-n], [1], phi) + hypergeom([-n,-n], [1], 1-phi) = phi^n * P_n(sqrt(5)-2) + (1-phi)^n * P_n(-sqrt(5)-2), where phi = (1+sqrt(5))/2, P_n(x) is the Legendre polynomial. - Vladimir Reshetnikov, Sep 28 2016
MATHEMATICA
Table[Sum[Binomial[n, k]^2*LucasL[k], {k, 0, n}], {n, 0, 20}]
FullSimplify@Table[GoldenRatio^n LegendreP[n, Sqrt[5] - 2] + (1 - GoldenRatio)^n LegendreP[n, -Sqrt[5] - 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 24 2012
STATUS
approved