login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n,k)^2*Lucas(k) where Lucas(n) = A000032(n).
3

%I #16 May 06 2017 17:02:21

%S 2,3,9,42,197,913,4302,20611,99773,486438,2385319,11752931,58139858,

%T 288572079,1436398329,7167499522,35842352013,179576501169,

%U 901226053422,4529717794607,22797936691207,114881558737498,579544350869889,2926592507364717,14792448049794122

%N a(n) = Sum_{k=0..n} binomial(n,k)^2*Lucas(k) where Lucas(n) = A000032(n).

%H Vincenzo Librandi, <a href="/A219673/b219673.txt">Table of n, a(n) for n = 0..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.

%F G.f.: 1/sqrt(1 - (3 + sqrt(5))*x + (3 - sqrt(5))/2*x^2) + 1/sqrt(1 - (3 - sqrt(5))*x + (3 + sqrt(5))/2*x^2).

%F a(n) ~ (1+sqrt(5))/4*sqrt((6-2*sqrt(5)+sqrt(2*sqrt(5)-2))/(2*Pi*n)) * ((3+sqrt(5))/2+sqrt(2+2*sqrt(5)))^n.

%F Recurrence (same as for A219672): (n-1)*n*(13*n^2 - 52*n + 49)*a(n) = 3*(n-1)*(2*n-5)*(13*n^2 - 26*n + 10)*a(n-1) - (7*n^2-14*n+6)*(13*n^2 - 52*n + 49)*a(n-2) + (n-2)*(182*n^3 - 819*n^2 + 1050*n - 351)*a(n-3) - (n-3)*(n-2)*(13*n^2 - 26*n + 10)*a(n-4).

%F a(n) = hypergeom([-n,-n], [1], phi) + hypergeom([-n,-n], [1], 1-phi) = phi^n * P_n(sqrt(5)-2) + (1-phi)^n * P_n(-sqrt(5)-2), where phi = (1+sqrt(5))/2, P_n(x) is the Legendre polynomial. - _Vladimir Reshetnikov_, Sep 28 2016

%t Table[Sum[Binomial[n, k]^2*LucasL[k], {k, 0, n}], {n, 0, 20}]

%t FullSimplify@Table[GoldenRatio^n LegendreP[n, Sqrt[5] - 2] + (1 - GoldenRatio)^n LegendreP[n, -Sqrt[5] - 2], {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 28 2016 *)

%Y Cf. A000032, A005248, A219672.

%K nonn

%O 0,1

%A _Vaclav Kotesovec_, Nov 24 2012