login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n,k)^2*F(k+1).
2

%I #17 May 11 2022 13:01:19

%S 1,2,7,31,142,659,3113,14918,72199,351983,1726022,8504509,42070429,

%T 208812722,1039387519,5186451311,25935769702,129942777227,

%U 652133298421,3277734587302,16496741964221,83129076840317,419362231888882

%N a(n) = Sum_{k=0..n} binomial(n,k)^2*F(k+1).

%H Alois P. Heinz, <a href="/A114198/b114198.txt">Table of n, a(n) for n = 0..1000</a>

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.

%F a(n) = Sum_{k=0..n} C(n, k)^2 * F(k+1); a(n) = A114197(2n, n).

%F a(n) = (phi^(n-1) * P_n(sqrt(5)-2) - (1-phi)^(n-1) * P_n(-sqrt(5)-2))/sqrt(5), where phi = (1+sqrt(5))/2, P_n(x) is the Legendre polynomial.

%F a(n) ~ sqrt((6 + 2*sqrt(5) + sqrt(2*(29 + 13*sqrt(5))))/10)/2 * ((3 + sqrt(5))/2 + sqrt(2*(1+sqrt(5))))^n / sqrt(Pi*n). - _Vaclav Kotesovec_, May 06 2017

%F a(n) ~ sqrt(2*phi^2 + phi^(7/2)) * (2*phi^(1/2) + phi^2)^n / (2*sqrt(5*Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Sep 22 2017

%F D-finite with recurrence +n*(n-1)*a(n) -5*n*(n-1)*a(n-1) +2*(-n^2+17*n-27)*a(n-2) +(11*n^2-135*n+270)*a(n-3) +2*(-17*n^2+121*n-215)*a(n-4) +(n-4)*(43*n-191)*a(n-5) -3*(n-4)*(n-5)*a(n-6)=0. - _R. J. Mathar_, May 11 2022

%p a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 31][n+1],

%p ((3*(n-1))*(2*n-5)*(13*n^2-26*n+10) *a(n-1)

%p -(7*n^2-14*n+6)*(13*n^2-52*n+49) *a(n-2)

%p +(n-2)*(182*n^3-819*n^2+1050*n-351) *a(n-3)

%p -(n-2)*(n-3)*(13*n^2-26*n+10) *a(n-4))/

%p (n*(n-1)*(13*n^2-52*n+49)))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Sep 28 2016

%t FullSimplify@Table[(GoldenRatio^(n - 1) LegendreP[n, Sqrt[5] - 2] - (1 - GoldenRatio)^(n - 1) LegendreP[n, -Sqrt[5] - 2])/Sqrt[5], {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 28 2016 *)

%Y Cf. A000045, A219672, A219673.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Nov 16 2005