login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125806
Triangle of the sum of squared coefficients of q in the q-binomial coefficients, read by rows.
4
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 16, 16, 5, 1, 1, 6, 29, 48, 29, 6, 1, 1, 7, 47, 119, 119, 47, 7, 1, 1, 8, 72, 256, 390, 256, 72, 8, 1, 1, 9, 104, 500, 1070, 1070, 500, 104, 9, 1, 1, 10, 145, 900, 2592, 3656, 2592, 900, 145, 10, 1, 1, 11, 195, 1525, 5674, 10762, 10762, 5674, 1525, 195, 11, 1
OFFSET
0,5
COMMENTS
Central terms equal A063075 (number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box).
EXAMPLE
The triangle of q-binomial coefficients:
C_q(n,k) = [Product_{i=n-k+1..n}(1-q^i)]/[Product_{j=1..k}(1-q^j)]
begins:
1;
1, 1;
1, 1+q, 1;
1, 1+q+q^2, 1+q+q^2, 1;
1, 1+q+q^2+q^3, 1+q+2*q^2+q^3+q^4, 1+q+q^2+q^3, 1; ...
recurrence: C_q(n+1,k) = C_q(n,k-1) + q^k * C_q(n,k).
Element T(n,k) of this triangle equals the sum of the squares
of the coefficients of q in q-binomial coefficient C_q(n,k).
This triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 8, 4, 1;
1, 5, 16, 16, 5, 1;
1, 6, 29, 48, 29, 6, 1;
1, 7, 47, 119, 119, 47, 7, 1;
1, 8, 72, 256, 390, 256, 72, 8, 1;
1, 9, 104, 500, 1070, 1070, 500, 104, 9, 1;
1, 10, 145, 900, 2592, 3656, 2592, 900, 145, 10, 1;
1, 11, 195, 1525, 5674, 10762, 10762, 5674, 1525, 195, 11, 1;
1, 12, 256, 2456, 11483, 28160, 37834, 28160, 11483, 2456, 256, 12, 1;
The central terms equal A063075:
1, 2, 8, 48, 390, 3656, 37834, 417540, 4836452, 58130756, ...
MATRIX INVERSE.
The matrix inverse starts
1;
-1,1;
1,-2,1;
-1,3,-3,1;
-1,0,4,-4,1;
9,-21,12,4,-5,1;
-1,34,-73,44,1,-6,1;
-219,479,-219,-139,109,-5,-7,1;
101,-1536,3072,-1776,-54,216,-16,-8,1; - R. J. Mathar, Mar 22 2013
MAPLE
C := proc(q, n, k)
local i, j ;
mul(1-q^i, i=n-k+1..n)/mul(1-q^j, j=1..k) ;
expand(factor(%)) ;
end proc:
A125806 := proc(n, k)
local qbin , q;
qbin := [coeffs(C(q, n, k), q)] ;
add( e^2, e=qbin) ;
end proc: # R. J. Mathar, Mar 22 2013
MATHEMATICA
T[n_, k_] := Module[{cc, q}, cc = CoefficientList[QBinomial[n, k, q] // FunctionExpand, q]; cc.cc];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 08 2023 *)
PROG
(PARI) T(n, k)=local(C_q=if(n==0 || k==0, 1, prod(j=n-k+1, n, 1-q^j)/prod(j=1, k, 1-q^j))); sum(i=0, (n-k)*k, polcoeff(C_q, i)^2)
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A063075 (central terms); A125807, A125808, A125809 (row sums).
Sequence in context: A300260 A026692 A114202 * A347148 A202756 A156354
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 11 2006
STATUS
approved