OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..450 (terms 0..80 from Paul D. Hanna)
FORMULA
a(n) = Sum_{k=0..n^2} A063746(n,k)^2; i.e., equals the sums of the squares of the coefficients of q in the central q-binomial coefficients. - Paul D. Hanna, Dec 12 2006
a(n) = [q^(n^2)](Product_{j=1..n} (1-q^(n+j))/(1-q^j))^2. - Tani Akinari, Jan 28 2022
a(n) ~ sqrt(3) * 2^(4*n - 1/2) / (Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Feb 02 2022
EXAMPLE
For a 6 X 6 board (n=3) the partition (6,6,2,2,2,0) represents a Ferrers plot that does not pass through the center of a 6*6 box.
From Paul D. Hanna, Dec 12 2006: (Start)
Central q-binomial coefficients begin:
1;
1 + q;
1 + q + 2*q^2 + q^3 + q^4;
1 + q + 2*q^2 + 3*q^3 + 3*q^4 + 3*q^5 + 3*q^6 + 2*q^7 + q^8 + q^9;
the coefficients of q in these polynomials form the rows of triangle A063746.
The sums of squared terms in rows of A063746 equal this sequence. (End)
MATHEMATICA
Table[(#.#)&@Table[T[k, n, n], {k, 0, n^2}], {n, 0, 24}] (* with T[m, a, b] as defined in A047993 *)
PROG
(PARI) a(n)=polcoef((prod(j=1, n, (1-q^(n+j))/(1-q^j)))^2, n^2, q) \\ Tani Akinari, Jan 28 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Aug 03 2001
STATUS
approved