login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202756
T(n,k)=Number of nXk nonnegative integer arrays with each row and column increasing from zero by 0 or 1
6
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 31, 62, 31, 6, 1, 1, 7, 51, 184, 184, 51, 7, 1, 1, 8, 78, 462, 924, 462, 78, 8, 1, 1, 9, 113, 1022, 3809, 3809, 1022, 113, 9, 1, 1, 10, 157, 2052, 13197, 26394, 13197, 2052, 157, 10, 1, 1, 11, 211, 3819, 39675
OFFSET
1,5
COMMENTS
Table starts
.1..1...1....1......1........1.........1...........1............1
.1..2...3....4......5........6.........7...........8............9
.1..3...8...17.....31.......51........78.........113..........157
.1..4..17...62....184......462......1022........2052.........3819
.1..5..31..184....924.....3809.....13197.......39675.......106357
.1..6..51..462...3809....26394....150777......721382......2964632
.1..7..78.1022..13197...150777...1442764....11408125.....75393424
.1..8.113.2052..39675...721382..11408125...150786848...1649287336
.1..9.157.3819.106357..2964632..75393424..1649287336..30114993376
.1.10.211.6688.259669.10720688.424992394.15057496688.455474662471
LINKS
FORMULA
Empirical: Columns of T(n,k) are a polynomial in n of degree k*(k-1)/2.
For elements increasing by 0..d instead of 0..1, columns are a polynomial of degree d*k*(k-1)/2.
EXAMPLE
Some solutions for n=5 k=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..1....0..0..0....0..1..1....0..1..1....0..0..0....0..0..0
..0..0..1....0..0..1....0..0..0....0..1..1....0..1..2....0..0..0....0..0..0
..0..0..1....0..1..1....0..0..1....0..1..2....0..1..2....0..0..0....0..0..0
..0..0..1....0..1..2....0..1..1....0..1..2....0..1..2....0..1..1....0..0..0
CROSSREFS
Column 3 is A105163(n+1)
Sequence in context: A114202 A125806 A347148 * A156354 A378938 A295205
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Dec 23 2011
STATUS
approved