login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156354
Triangle T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1, read by rows.
2
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 32, 54, 32, 6, 1, 1, 7, 57, 145, 145, 57, 7, 1, 1, 8, 100, 368, 512, 368, 100, 8, 1, 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1, 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1, 1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1
OFFSET
0,5
COMMENTS
This sequence is an approximation of Pascal's triangle with interior Kurtosis.
Essentially the same as A055652. - R. J. Mathar, Feb 19 2009
FORMULA
T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1.
T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n,k) = [n=0] + 2*A026898(n-1). - G. C. Greubel, Mar 07 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 8, 4, 1;
1, 5, 17, 17, 5, 1;
1, 6, 32, 54, 32, 6, 1;
1, 7, 57, 145, 145, 57, 7, 1;
1, 8, 100, 368, 512, 368, 100, 8, 1;
1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1;
1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1;
1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1;
The interior Kurtosis, T(n,k) - binomial(n, k), is:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 2, 0, 0;
0, 0, 7, 7, 0, 0;
0, 0, 17, 34, 17, 0, 0;
0, 0, 36, 110, 110, 36, 0, 0;
0, 0, 72, 312, 442, 312, 72, 0, 0;
0, 0, 141, 861, 1523, 1523, 861, 141, 0, 0;
0, 0, 275, 2410, 5182, 5998, 5182, 2410, 275, 0, 0;
0, 0, 538, 6908, 18455, 22939, 22939, 18455, 6908, 538, 0, 0;
MATHEMATICA
T[n_, k_]:= If[n==0, 1, (k^(n-k) + (n-k)^k)];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Sage) flatten([[1 if k==n else k^(n-k) + (n-k)^k for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 07 2021
(Magma) [k eq 0 select 1 else k^(n-k) + (n-k)^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 07 2021
CROSSREFS
Cf. A026898.
Sequence in context: A125806 A347148 A202756 * A295205 A297020 A099597
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 08 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 07 2021
STATUS
approved