OFFSET
1,3
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, Annals of Combinatorics, 6, 2002, 407-418.
Index entries for linear recurrences with constant coefficients, signature (-1,2,3,0,-3,-2,1,1).
FORMULA
n^2/6 if n mod 6 = 0; (7*n^2-12*n+29)/24 if n mod 6 = 1 or 5; (n^2-4)/6 if n mod 6 = 2 or 4; (7*n^2-12*n+45)/24 if n mod 6 = 3.
a(n) = a(n-1)+ 2*a(n-2)+3*a(n-3)-3*a(n-5)-2*a(n-6)+a(n-7)+a(n-8). [Harvey P. Dale, Mar 05 2012]
G.f.: -x*(2*x^6+2*x^5+2*x^4+2*x^3+x^2+x+1) / ((x-1)^3*(x+1)^3*(x^2+x+1)). [Colin Barker, Aug 11 2013]
EXAMPLE
a(2)=0 because none of the permutations 12 and 21 has exactly one fixed point.
a(3)=3 because we have 132, 213 and 321.
a(4)=2 because we have 4132 and 4213.
MAPLE
a:=proc(n) if n mod 6 = 0 then n^2/6 elif n mod 6 = 1 or n mod 6 = 5 then (7*n^2-12*n+29)/24 elif n mod 6 = 2 or n mod 6 = 4 then (n^2-4)/6 else (7*n^2-12*n+45)/24 fi end: seq(a(n), n=1..70);
MATHEMATICA
npn[n_]:=Module[{c=Mod[n, 6]}, Which[c==0, n^2/6, c==1, (7n^2-12n+29)/24, c==2, (n^2-4)/6, c==3, (7n^2-12n+45)/24, c==4, (n^2-4)/6, c==5, (7n^2-12n+29)/24]]; Array[npn, 60] (* or *) LinearRecurrence[{-1, 2, 3, 0, -3, -2, 1, 1}, {1, 0, 3, 2, 6, 6, 12, 10}, 60] (* Harvey P. Dale, Mar 05 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 17 2005
STATUS
approved