login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053090 Number of F^3-convex polyominoes on honeycomb lattice with given semiperimeter. 5
1, 0, 3, 2, 6, 6, 12, 12, 21, 22, 33, 36, 50, 54, 72, 78, 99, 108, 133, 144, 174, 188, 222, 240, 279, 300, 345, 370, 420, 450, 506, 540, 603, 642, 711, 756, 832, 882, 966, 1022, 1113, 1176, 1275, 1344, 1452, 1528, 1644, 1728, 1853, 1944, 2079, 2178, 2322, 2430 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,3
COMMENTS
Sequence is also given by the Poincaré series [or Poincare series] of an ordinal Hodge algebra, or algebra with straightening law, that the three-strand braid group acts on. - Stephen P. Humphries, Feb 06 2009
From Michael Somos, Jun 21 2012: (Start)
Euler transform of length-6 sequence [ 0, 3, 2, 0, 0, -1].
Expansion of F^3(x, 1, 1, 1) in powers of x where F^3(x, y, q, t) is the generating function defined in the FPSAC97 article.
The polyominoes are counted up to translations but not rotations and reflections. Thus, the unique domino with two cells is counted three times for its three orientations.
The semiperimeter of each hexagonal cell is 3 but each common side shared by two cells decreases the semiperimeter by one. (End)
From Jianing Song, Apr 27 2022: (Start)
Let w = exp(2*Pi*i/6) be a primitive 6th root of 1. Then a(n+3) is number of nonnegative integer solutions to Sum_{j=0..5} x_j = n, Sum_{j=0..5} (x_j)*w^j = 0.
Proof: Sum_{j=0..5} (x_j)*w^j = x_0 + (x_1)*w + (x_2)*(w-1) - x_3 - (x_4)*w - (x_5)*(w-1), so Sum_{j=0..5} (x_j)*w^j = 0 if and only if x_0 + x_5 = x_2 + x_3 and x_1 + x_2 = x_4 + x_5, or equivalently, x_0 - x_3 = x_2 - x_5 = x_4 - x_1.
Case (a): x_0 - x_3 = x_2 - x_5 = x_4 - x_1 >= 0, then we can write x_0 = x+t, x_1 = z, x_2 = y+t, x_3 = x, x_4 = z+t, x_5 = y. The number of solutions in this case is equal to the number of solutions to 2*s + 3*t = n, x+y+z = s.
Case (b): x_0 - x_3 = x_2 - x_5 = x_4 - x_1 <= 0, then we can write x_0 = x, x_1 = z+t, x_2 = y, x_3 = x+t, x_4 = z, x_5 = y+t. The number of solutions in this case is also equal to the number of solutions to 2*s + 3*t = n, x+y+z = s.
The common part of case (a) and case (b) is the case where x_0 - x_3 = x_2 - x_5 = x_4 - x_1 = 0, in which case the number of solutions is equal to the number of solutions to x+y+z = n/2 for even n and 0 for odd n.
In conclusion, the total number of solutions is 2*Sum_{s=0..n/2, 3|(n-2*s)} (s+1)*(s+2)/2 - [n even]*(n/2+1)*(n/2+2)/2, where [] is an Iverson bracket. This can be shown to be equal to a(n+3). (End)
REFERENCES
Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux décalés oscillants. Thèse de Doctorat. Laboratoire de Recherche en Informatique, Université Paris-Sud XI, France.
Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumération et génération aléatoire de polyominos convexes en réseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics (FPSAC97), pages 222-234, 1997.
LINKS
Stephen P. Humphries, Action of some braid groups on Hodge algebras Comm. Algebra 26 (1998), no. 4, pages 1233-1242. See Proposition 3.4 on page 1241. [From Stephen P. Humphries, Feb 06 2009]
FORMULA
G.f.: x^3*(1 + x^3)/((1 - x^2)^3*(1 - x^3)).
a(-n) = -a(n). a(n) = round( n*(2*n^2 + 3)/144 - (-1)^n*3*n/16 ). - Michael Somos, Jun 21 2012
EXAMPLE
x^3 + 3*x^5 + 2*x^6 + 6*x^7 + 6*x^8 + 12*x^9 + 12*x^10 + 21*x^11 + ...
+---+
| o | a(3) = 1
+---------------+
| o o | o | o | a(5) = 3
| | o | o |
+---------------+
| o | o o | a(6) = 2
| o o | o |
+---------------------------------------+
| | o | o | o | | o o |
| o o o | o | o | o o | o o | o o | a(7) = 6
| | o | o | o | o o | |
+---------------------------------------+
- Michael Somos, Jun 21 2012
PROG
(PARI) {a(n) = round( n * (2*n^2 + 3) / 144 - (-1)^n * 3*n / 16)} /* Michael Somos, Jun 21 2012 */
(PARI) {a(n) = sign(n) * polcoeff( x^3 * (1 + x^3) / ((1 - x^2)^3 * (1 - x^3)) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Jun 21 2012 */
CROSSREFS
Sequence in context: A062200 A114208 A014686 * A264400 A365660 A309512
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 07:53 EDT 2024. Contains 371964 sequences. (Running on oeis4.)