login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-p(k-1)), where p(k) = number of partitions of k (A000041).
6

%I #7 May 22 2018 20:34:10

%S 1,0,1,1,3,3,8,9,20,26,49,68,123,173,295,432,707,1044,1672,2483,3900,

%T 5817,8993,13424,20539,30609,46399,69052,103879,154198,230550,341261,

%U 507484,749028,1108559,1631340,2404311,3527615,5179317,7577263,11086413,16173577,23588227

%N Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-p(k-1)), where p(k) = number of partitions of k (A000041).

%C Euler transform of A002865.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F G.f.: Product_{k>=1} 1/(1 - x^k)^A002865(k).

%p b:= proc(n) option remember; `if`(n=0, 1, add(

%p (numtheory[sigma](j)-1)*b(n-j), j=1..n)/n)

%p end:

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(d*

%p b(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, May 22 2018

%t nmax = 42; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - PartitionsP[k - 1]), {k, 1, nmax}], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - PartitionsP[d - 1]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 42}]

%Y Cf. A000041, A000219, A001383, A001970, A002865, A304966.

%K nonn

%O 0,5

%A _Ilya Gutkovskiy_, May 22 2018