login
A092479
T(n,k) is the number of numbers <= 2^n having exactly k prime factors (with repetitions), 0<=k<=n, triangle read by rows.
1
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 6, 2, 1, 1, 11, 10, 7, 2, 1, 1, 18, 22, 13, 7, 2, 1, 1, 31, 42, 30, 14, 7, 2, 1, 1, 54, 82, 60, 34, 15, 7, 2, 1, 1, 97, 157, 125, 71, 36, 15, 7, 2, 1, 1, 172, 304, 256, 152, 77, 37, 15, 7, 2, 1, 1, 309, 589, 513, 325, 168, 81, 37, 15, 7, 2, 1, 1, 564, 1124, 1049, 669, 367, 177, 83, 37, 15, 7, 2, 1
OFFSET
0,5
FORMULA
T(n,0) = 1; T(n,1) = A007053(n,1) for n>0; T(n,n) = 1.
Sum_{k=0..n} T(n,k) = 2^n.
EXAMPLE
Triangle starts:
1;
1, 1;
1, 2, 1;
1, 4, 2, 1;
1, 6, 6, 2, 1;
1, 11, 10, 7, 2, 1;
1, 18, 22, 13, 7, 2, 1;
...
MATHEMATICA
row[n_] := Module[{i, v = Table[0, {n}]}, For[i = 2, i <= 2^n, i++, v[[PrimeOmega[i]]]++]; Prepend[v, 1]];
Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Sep 23 2021, after PARI code *)
PROG
(PARI) row(n) = {v = vector(n); for (i=2, 2^n, v[bigomega(i)]++; ); concat(1, v); }
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Aug 11 2015
CROSSREFS
Cf. A001222.
Sequence in context: A089688 A229706 A319421 * A124022 A098063 A209438
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Mar 27 2004
STATUS
approved