login
A098063
Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n and having k level steps at height >0 (can be easily expressed using RNA secondary structure terminology).
0
1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 7, 2, 1, 1, 9, 13, 11, 2, 1, 1, 12, 28, 22, 16, 2, 1, 1, 16, 46, 64, 33, 22, 2, 1, 1, 20, 80, 118, 126, 46, 29, 2, 1, 1, 25, 120, 258, 248, 225, 61, 37, 2, 1, 1, 30, 185, 438, 668, 460, 374, 78, 46, 2, 1, 1, 36, 260, 813, 1231, 1506, 782, 588, 97
OFFSET
0,7
COMMENTS
Row sums yield the RNA secondary structure numbers (A004148).
LINKS
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08; Sem. Loth. Comb. B08l (1984) 79-86.
FORMULA
G.f.: G=G(t, z) satisfies z(t-tz+tz^2-1+2z-z^2)G^2-(1-2z+z^2+tz)G+1=0.
EXAMPLE
Triangle starts:
1;
1;
1;
1,1;
1,2,1;
1,4,2,1;
1,6,7,2,1;
1,9,13,11,2,1;
...
Row n (n>=2) has n-1 terms.
T(5,2)=2 because among the eight peakless Motzkin paths of length 5 only HU(HH)D and U(HH)DH have two H's at positive height (shown between parentheses); here U=(1,1), H=(1,0), D=(1,-1).
CROSSREFS
Cf. A004148.
Sequence in context: A319421 A092479 A124022 * A209438 A106396 A282869
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 12 2004
STATUS
approved