login
A024834
a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
3
4, 13, 26, 43, 64, 100, 133, 183, 226, 290, 343, 421, 484, 576, 676, 757, 871, 993, 1090, 1226, 1370, 1483, 1641, 1807, 1936, 2116, 2304, 2500, 2653, 2863, 3081, 3307, 3482, 3722, 3970, 4226, 4423, 4693, 4971, 5257, 5476, 5776, 6084, 6400, 6724, 6973, 7311, 7657, 8011
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(2*Range[50] - 1), #] &, Range[5]];
t[[2]] (* A024834 *)
(* Peter J. C. Moses, Aug 06 2012 *)
CROSSREFS
Sequence in context: A333297 A092484 A091823 * A143867 A024809 A212901
KEYWORD
nonn
STATUS
approved