login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024832
Least m such that if r and s in {Pi/2 - atn(h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.
3
2, 3, 7, 10, 17, 21, 31, 43, 50, 65, 82, 91, 111, 133, 157, 170, 197, 226, 257, 273, 307, 343, 381, 421, 442, 485, 530, 577, 626, 651, 703, 757, 813, 871, 931, 962, 1025, 1090, 1157, 1226, 1297, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1850, 1937, 2026, 2117, 2210, 2305
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[Pi/2 - ArcTan[h], {h, 1, 60}]]; leastSeparator[t]
(* Peter J. C. Moses, Aug 01 2012 *)
CROSSREFS
Sequence in context: A240302 A281611 A054060 * A213075 A100847 A271713
KEYWORD
nonn
STATUS
approved