login
A024832
Least m such that if r and s in {Pi/2 - atn(h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.
3
2, 3, 7, 10, 17, 21, 31, 43, 50, 65, 82, 91, 111, 133, 157, 170, 197, 226, 257, 273, 307, 343, 381, 421, 442, 485, 530, 577, 626, 651, 703, 757, 813, 871, 931, 962, 1025, 1090, 1157, 1226, 1297, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1850, 1937, 2026, 2117, 2210, 2305
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[Pi/2 - ArcTan[h], {h, 1, 60}]]; leastSeparator[t]
(* Peter J. C. Moses, Aug 01 2012 *)
CROSSREFS
Sequence in context: A240302 A281611 A054060 * A213075 A100847 A271713
KEYWORD
nonn
STATUS
approved