login
A024837
a(n) = least m such that if r and s in {1/2, 1/5, 1/8, ..., 1/(3n-1)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
4
7, 21, 41, 67, 100, 155, 205, 281, 346, 443, 523, 641, 737, 876, 1027, 1149, 1321, 1505, 1651, 1856, 2073, 2243, 2481, 2731, 2993, 3197, 3480, 3775, 4082, 4321, 4649, 4989, 5341, 5613, 5986, 6371, 6768, 7073, 7491, 7921, 8363, 8702, 9165, 9640, 10127, 10626, 11009
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(3*Range[50]-1), #] &, Range[5]];
t[[2]] (* A024837 *)
(* Peter J. C. Moses, Aug 06 2012 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved