login
A024839
Least m such that if r and s in {1/4, 1/8, 1/12, ..., 1/4n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
2
13, 33, 61, 97, 161, 221, 313, 393, 513, 613, 761, 881, 1057, 1249, 1405, 1625, 1861, 2049, 2313, 2593, 2813, 3121, 3445, 3697, 4049, 4417, 4801, 5101, 5513, 5941, 6385, 6729, 7201, 7689, 8193, 8581, 9113, 9661, 10225, 10657, 11249, 11857
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(4*Range[50]), #] &, Range[5]];
t[[2]] (* A024839 *)
(* Peter J. C. Moses, Aug 06 2012 *)
CROSSREFS
Sequence in context: A123161 A146052 A082109 * A146177 A146194 A204707
KEYWORD
nonn
EXTENSIONS
Corrected by Clark Kimberling, Aug 12 2012
STATUS
approved