login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024842
a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/2n} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.
3
11, 29, 55, 89, 131, 181, 253, 323, 417, 505, 621, 727, 865, 989, 1149, 1291, 1473, 1633, 1837, 2053, 2243, 2481, 2731, 2949, 3221, 3505, 3751, 4057, 4375, 4649, 4989, 5341, 5643, 6017, 6403, 6733, 7141, 7561, 7993, 8363, 8817, 9283, 9761, 10169, 10669, 11181, 11705
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(2*Range[50]), #] &, Range[5]];
t[[3]] (* A024842 *)
(* Peter J. C. Moses, Aug 06 2012 *)
CROSSREFS
Sequence in context: A364894 A082108 A024846 * A304275 A031072 A193880
KEYWORD
nonn
STATUS
approved