login
A024841
a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.
3
5, 19, 41, 71, 109, 155, 222, 287, 376, 460, 571, 673, 806, 926, 1081, 1219, 1396, 1552, 1751, 1926, 2147, 2380, 2584, 2839, 3106, 3338, 3627, 3928, 4188, 4511, 4846, 5134, 5491, 5860, 6176, 6567, 6970, 7385, 7740, 8177, 8626, 9087, 9481, 9964, 10459, 10966, 11398
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
t[[3]] (* A024841 *)
(* Peter J. C. Moses, Aug 06 2012 *)
CROSSREFS
Sequence in context: A262997 A031379 A125202 * A155737 A100572 A119534
KEYWORD
nonn
STATUS
approved