login
A285456
Least number x such that x^n has n digits equal to k. Case k = 9.
2
9, 63, 99, 131, 99, 983, 864, 1091, 2137, 1349, 2053, 3686, 4053, 5741, 9609, 3822, 11924, 7533, 9096, 22387, 13502, 5912, 26942, 19603, 41735, 46946, 32113, 56205, 74549, 99624, 58129, 83731, 93528, 74023, 92956, 67972, 124262, 119865, 30499, 81629, 61259, 143197
OFFSET
1,1
EXAMPLE
a(4) = 131 because 131^4 = 294499921 has 4 digits '9' and is the least number to have this property.
MAPLE
P:=proc(q, h) local a, j, k, n, t; for n from 1 to q do for k from 1 to q do
a:=convert(k^n, base, 10); t:=0; for j from 1 to nops(a) do if a[j]=h then t:=t+1; fi; od;
if t=n then print(k); break; fi; od; od; end: P(10^9, 9);
CROSSREFS
Sequence in context: A181403 A292309 A337236 * A085645 A299579 A344526
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Apr 19 2017
STATUS
approved