login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285459
Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(5*k)))^k.
4
1, 1, 2, 5, 8, 17, 29, 51, 88, 150, 254, 416, 682, 1102, 1765, 2810, 4415, 6897, 10704, 16482, 25251, 38410, 58120, 87480, 130999, 195253, 289612, 427757, 629128, 921590, 1344904, 1955246, 2832608, 4089696, 5885169, 8442269, 12073072, 17214535, 24475417
OFFSET
0,3
COMMENTS
In general, if m >= 1 and g.f. = Product_{k>=1} ((1 + x^k) / (1 - x^(m*k)))^k, then a(n, m) ~ exp(1/12 + 3 * 2^(-4/3) * (3 + 4/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * (3 + 4/m^2)^(7/36) * m^(1/12) * Zeta(3)^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
LINKS
FORMULA
a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (79*Zeta(3))^(1/3) * n^(2/3)) * (79*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(11/36) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(5*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A156616 (m=1), A000219 (m=2), A285446 (m=3), A285458 (m=4).
Sequence in context: A112346 A062318 A034445 * A259580 A316795 A054754
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 19 2017
STATUS
approved