login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285461
Expansion of Product_{k>=1} ((1 + x^(5*k)) / (1 - x^k))^k.
5
1, 1, 3, 6, 13, 25, 49, 89, 166, 295, 526, 909, 1571, 2657, 4475, 7432, 12257, 20000, 32436, 52126, 83285, 132057, 208221, 326202, 508372, 787777, 1214828, 1863932, 2847020, 4328765, 6554359, 9882795, 14843999, 22210386, 33112817, 49192218, 72834243
OFFSET
0,3
COMMENTS
In general, if m >= 1 and g.f. = Product_{k>=1} ((1 + x^(m*k)) / (1 - x^k))^k, then a(n, m) ~ exp(1/12 + 3 * 2^(-4/3) * (4 + 3/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * (4 + 3/m^2)^(7/36) * Zeta(3)^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
LINKS
FORMULA
a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (103*Zeta(3))^(1/3) * n^(2/3)) * (103*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(7/18) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1+x^(5*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A156616 (m=1), A285462 (m=2), A285447 (m=3), A285460 (m=4).
Cf. A024789.
Sequence in context: A339617 A131913 A182808 * A324129 A005406 A005407
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 19 2017
STATUS
approved