login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324129
a(n) = n*Fibonacci(n) + ((-1)^n + 1)/2.
2
1, 1, 3, 6, 13, 25, 49, 91, 169, 306, 551, 979, 1729, 3029, 5279, 9150, 15793, 27149, 46513, 79439, 135301, 229866, 389643, 659111, 1112833, 1875625, 3156219, 5303286, 8898709, 14912641, 24961201, 41734339, 69705889, 116311074, 193898159, 322961275
OFFSET
0,3
COMMENTS
Equals A324128(n)/2.
This sequence is distantly related to (one-half) the number of losing strings using a binary alphabet in the "same game" described by Burns and Purcell (2007) and Kurz (2001). - Petros Hadjicostas, Sep 01 2019
LINKS
Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
Sascha Kurz, Polynomials in "same game", 2001.
FORMULA
From Chai Wah Wu, Feb 20 2019: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) for n > 5.
G.f.: (x^5 - x^4 - 2*x^3 + x^2 + x - 1)/((x - 1)*(x + 1)*(x^2 + x - 1)^2). (End)
a(n) = A309874(n)/2 + A099920(n-1) = 2^(n-1) - A035615(n)/2 + A099920(n-1) = A323812(n) + A099920(n-1) for n >= 2. [Sequence A309874 counts the losing strings while A035615 counts the winning strings using a binary alphabet in the "same game". See Burns and Purcell (2007) and Kurz (2001).] - Petros Hadjicostas, Sep 01 2019
MATHEMATICA
A324129[n_]:=Fibonacci[n]n+((-1)^n+1)/2; Array[A324129, 50, 0] (* Paolo Xausa, Nov 15 2023 *)
PROG
(PARI) Vec((1 - x - x^2 + 2*x^3 + x^4 - x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)^2) + O(x^40)) \\ Colin Barker, Mar 03 2019
(Magma) [n*Fibonacci(n)+((-1)^n+1)/2:n in [0..35]]; // Marius A. Burtea, Aug 29 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 20 2019
STATUS
approved