login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005406
Number of protruded partitions of n with largest part at most 5.
(Formerly M2569)
0
1, 3, 6, 13, 25, 49, 91, 170, 309, 558, 992, 1752, 3062, 5317, 9166, 15712, 26784, 45447, 76775, 129203, 216662, 362177, 603671, 1003566, 1664389, 2754382, 4549207, 7500096, 12344840, 20288723, 33298979, 54584077, 89373081, 146182754
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Ordered structures and partitions, Memoirs of the Amer. Math. Soc., no. 119 (1972).
LINKS
R. P. Stanley, A Fibonacci lattice, Fib. Quart., 13 (1975), 215-232.
FORMULA
G.f.: (1-x)^5/Product(1-x-x^i+x^(1+2*i), i=1..5)-1. - Emeric Deutsch, Dec 19 2004
MAPLE
G:=(1-x)^5/Product(1-x-x^i+x^(1+2*i), i=1..5)-1: Gser:=series(G, x=0, 39): seq(coeff(Gser, x^n), n=1..37); # Emeric Deutsch, Dec 19 2004
MATHEMATICA
Rest@ CoefficientList[Series[(1 - x)^5/Product[1 - x - x^i + x^(1 + 2 i), {i, 5}] - 1, {x, 0, 34}], x] (* Michael De Vlieger, Sep 05 2017 *)
CROSSREFS
Sequence in context: A182808 A285461 A324129 * A005407 A005116 A121349
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Dec 19 2004
STATUS
approved