login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005405
Number of protruded partitions of n with largest part at most 4.
(Formerly M2565)
1
1, 3, 6, 13, 24, 47, 86, 159, 285, 509, 895, 1565, 2708, 4660, 7964, 13543, 22912, 38604, 64785, 108356, 180661, 300384, 498183, 824365, 1361302, 2243799, 3692159, 6066161, 9952786, 16309055, 26694132, 43646685, 71297770, 116366274, 189774755, 309271954, 503687536
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Ordered structures and partitions, Memoirs of the Amer. Math. Soc., no. 119 (1972).
LINKS
R. P. Stanley, A Fibonacci lattice, Fib. Quart., 13 (1975), 215-232.
FORMULA
G.f.: (1-x)^4/Product(1-x-x^i+x^(1+2*i), i=1..4)-1. - Emeric Deutsch, Dec 19 2004
MAPLE
G:=(1-x)^4/Product(1-x-x^i+x^(1+2*i), i=1..4)-1: Gser:=series(G, x=0, 39): seq(coeff(Gser, x^n), n=1..37); # Emeric Deutsch, Dec 19 2004
MATHEMATICA
Rest@ CoefficientList[Series[(1 - x)^4/Product[1 - x - x^i + x^(1 + 2 i), {i, 4}] - 1, {x, 0, 34}], x] (* Michael De Vlieger, Sep 05 2017 *)
CROSSREFS
Sequence in context: A293421 A018081 A001452 * A225196 A301597 A225197
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Dec 19 2004
STATUS
approved