login
A005404
Number of protruded partitions of n with largest part at most 3.
(Formerly M2555)
1
1, 3, 6, 12, 22, 42, 75, 135, 238, 416, 719, 1236, 2107, 3574, 6030, 10130, 16950, 28267, 46993, 77916, 128874, 212701, 350375, 576165, 945984, 1551009, 2539790, 4154212, 6787891, 11081022, 18074324, 29458899, 47981563, 78102314, 127060462
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Ordered structures and partitions, Memoirs of the Amer. Math. Soc., no. 119 (1972).
LINKS
R. P. Stanley, A Fibonacci lattice, Fib. Quart., 13 (1975), 215-232.
FORMULA
G.f.: (1-x)^3/Product(1-x-x^i+x^(1+2*i), i=1..3)-1. - Emeric Deutsch, Dec 19 2004
MAPLE
G:=(1-x)^3/Product(1-x-x^i+x^(1+2*i), i=1..3)-1: Gser:=series(G, x=0, 39): seq(coeff(Gser, x^n), n=1..37); # Emeric Deutsch, Dec 19 2004
MATHEMATICA
Rest@ CoefficientList[Series[(1 - x)^3/Product[1 - x - x^i + x^(1 + 2 i), {i, 3}] - 1, {x, 0, 35}], x] (* Michael De Vlieger, Sep 05 2017 *)
CROSSREFS
Sequence in context: A236913 A288348 A018078 * A249795 A097939 A249565
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Dec 19 2004
STATUS
approved