login
A293421
The PD_t(n) function (Number of tagged parts over all the partitions of n with designated summands).
3
1, 3, 6, 13, 24, 45, 77, 132, 213, 346, 537, 834, 1257, 1893, 2778, 4077, 5865, 8421, 11903, 16785, 23364, 32444, 44562, 61041, 82859, 112164, 150639, 201768, 268413, 356100, 469636, 617724, 808236, 1054802, 1370127, 1775286, 2290610, 2948427, 3780717, 4836814
OFFSET
1,2
LINKS
FORMULA
G.f.: (1/2) * (Product_{k>0} (1 - q^(3*k))^5/((1 - q^k)^3*(1 - q^(6*k))^2) - Product_{k>0} (1 - q^(6*k))/((1 - q^k)*(1 - q^(2*k))*(1 - q^(3*k)))).
a(n) = (1/2) * (A293423(n) - A077285(n)).
a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (9*2^(5/4)*n^(3/4)). - Vaclav Kotesovec, Oct 15 2017
EXAMPLE
n = 4
-------------------
4' -> 1
3'+ 1' -> 2
2'+ 2 -> 1
2 + 2' -> 1
2'+ 1'+ 1 -> 2
2'+ 1 + 1' -> 2
1'+ 1 + 1 + 1 -> 1
1 + 1'+ 1 + 1 -> 1
1 + 1 + 1'+ 1 -> 1
1 + 1 + 1 + 1'-> 1
-------------------
a(4) = 13.
PROG
(Ruby)
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def A(n)
partition(n, 1, n).map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+)
end
def A293421(n)
(1..n).map{|i| A(i)}
end
p A293421(40)
CROSSREFS
Cf. A077285 (PD(n)), A293422, A293423.
Sequence in context: A263847 A061567 A293076 * A018081 A001452 A005405
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 08 2017
STATUS
approved