OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
Bernard L. S. Lin, The number of tagged parts over the partitions with designated summands, Journal of Number Theory.
FORMULA
G.f.: (1/2) * (Product_{k>0} (1 - q^(3*k))^5/((1 - q^k)^3*(1 - q^(6*k))^2) - Product_{k>0} (1 - q^(6*k))/((1 - q^k)*(1 - q^(2*k))*(1 - q^(3*k)))).
a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (9*2^(5/4)*n^(3/4)). - Vaclav Kotesovec, Oct 15 2017
EXAMPLE
n = 4
-------------------
4' -> 1
3'+ 1' -> 2
2'+ 2 -> 1
2 + 2' -> 1
2'+ 1'+ 1 -> 2
2'+ 1 + 1' -> 2
1'+ 1 + 1 + 1 -> 1
1 + 1'+ 1 + 1 -> 1
1 + 1 + 1'+ 1 -> 1
1 + 1 + 1 + 1'-> 1
-------------------
a(4) = 13.
PROG
(Ruby)
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def A(n)
partition(n, 1, n).map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+)
end
def A293421(n)
(1..n).map{|i| A(i)}
end
p A293421(40)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 08 2017
STATUS
approved