login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A293424
Hamming distance between two consecutive semiprimes.
1
1, 4, 2, 1, 1, 3, 2, 4, 2, 5, 2, 1, 2, 1, 2, 5, 1, 1, 3, 2, 1, 7, 1, 4, 3, 5, 3, 2, 1, 2, 2, 2, 1, 4, 2, 3, 2, 1, 3, 2, 1, 6, 1, 2, 3, 2, 1, 4, 2, 2, 2, 1, 5, 3, 4, 2, 2, 2, 3, 1, 5, 3, 2, 1, 2, 2, 5, 1, 2, 1, 3, 2, 1, 2, 6, 2, 2, 3, 3, 1, 2, 8, 2, 4, 1, 3, 1, 2, 5, 1, 1, 3, 1, 2, 2, 1, 4, 1, 4, 2, 6, 1, 2, 1, 3
OFFSET
1,2
COMMENTS
The least semiprime whose Hamming distance between it and its successor semiprime is k: 4, 9, 15, 6, 26, 123, 62, 254, 511, 3071, 2047, 8189, 32765, 16382, 98303, 65531, 393215, 262142, 1572863, 2621438, 1048574, 16777207, 8388607, 50331647, 33554429, 134217721, 268435451, etc.
Not surprisingly, the above are often the largest semiprime < 2^j.
LINKS
EXAMPLE
a(1) = 1 because the semiprimes 4 & 6, 100_2 & 110_2 have a Hamming distance of 1;
a(2) = 4 because the semiprimes 6 & 9, 110_2 & 1001_2 have a Hamming distance of 4;
a(3) = 2 because the semiprimes 9 & 10, 1001_2 & 1010_2 have a Hamming distance of 2; etc.
MAPLE
semiprimes:= select(t -> numtheory:-bigomega(t)=2, [$4..1023]):
L:=map(t -> convert(t+1024, base, 2), semiprimes):
map(t -> 11 - numboccur(0, t), L[2..-1]-L[1..-2]); # Robert Israel, Oct 08 2017
# alternative
read("transforms") :
A293424 := proc(n)
local s1, s2 ;
s1 := A001358(n) ;
s2 := A001358(n+1) ;
XORnos(s1, s2) ;
wt(%) ;
end proc: # R. J. Mathar, Jan 06 2018
MATHEMATICA
Count[ IntegerDigits[ BitXor[ #[[1]], #[[2]]], 2], 1] & /@ Partition[ Select[ Range@330, PrimeOmega@# == 2 &], 2, 1]
PROG
(PARI) lista(nn) = my(v = select(x->bigomega(x)==2, vector(nn, k, k))); vector(#v-1, k, norml2(binary(bitxor(v[k], v[k+1])))); \\ Michel Marcus, Oct 11 2017
CROSSREFS
Cf. A001358 (semiprimes), A205510 (between consecutive primes).
Sequence in context: A144260 A097526 A051149 * A152145 A288251 A024553
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Oct 08 2017
STATUS
approved