login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A288251
k-th term of n in the 3x+1 problem, k >= 1. Square array A(n, k) read by antidiagonals downwards.
0
4, 2, 1, 1, 4, 10, 4, 2, 5, 2, 2, 1, 16, 1, 16, 1, 4, 8, 4, 8, 3, 4, 2, 4, 2, 4, 10, 22, 2, 1, 2, 1, 2, 5, 11, 4, 1, 4, 1, 4, 1, 16, 34, 2, 28, 4, 2, 4, 2, 4, 8, 17, 1, 14, 5, 2, 1, 2, 1, 2, 4, 52, 4, 7, 16, 34, 1, 4, 1, 4, 1, 2, 26, 2, 22, 8, 17, 6, 4, 2, 4
OFFSET
1,1
FORMULA
T(m, n) = A(n, m-n+1), 1 <= n <= m, with A(n, k) = C^{[k]}(n), n >= 1, k >= 1, with iterations of the Collatz map C: n -> 3*n+1 if n is odd and n -> n/2 if n is even. - Wolfdieter Lang, Jul 13 2017
EXAMPLE
The array A(n, k) starts:
n\k | 1 2 3 4 5 6 7 8 9 10 11 12 ...
---------------------------------------------
1 | 4 2 1 4 2 1 4 2 1 4 2 1
2 | 1 4 2 1 4 2 1 4 2 1 4 2
3 | 10 5 16 8 4 2 1 4 2 1 4 2
4 | 2 1 4 2 1 4 2 1 4 2 1 4
5 | 16 8 4 2 1 4 2 1 4 2 1 4
6 | 3 10 5 16 8 4 2 1 4 2 1 4
7 | 22 11 34 17 52 26 13 40 20 10 5 16
8 | 4 2 1 4 2 1 4 2 1 4 2 1
9 | 28 14 7 22 11 34 17 52 26 13 40 20
10 | 5 16 8 4 2 1 4 2 1 4 2 1
...
The triangle T(m, n) starts:
m\n | 1 2 3 4 5 6 7 8 9 10 ...
------------------------------------
1 | 4
2 | 2 1
3 | 1 4 10
4 | 4 2 5 2
5 | 2 1 16 1 16
6 | 1 4 8 4 8 3
7 | 4 2 4 2 4 10 22
8 | 2 1 2 1 2 5 11 4
9 | 1 4 1 4 1 16 34 2 28
10 | 4 2 4 2 4 8 17 1 14 5
... formatted, Wolfdieter Lang, Jul 13 2017
PROG
(PARI) trajectory(n, terms) = my(i=0, x=n); while(1, if(x%2==0, x=x/2, x=3*x+1); print1(x, ", "); i++; if(i==terms, break))
array(n, k) = for(x=1, n, trajectory(x, k); print(""))
array(10, 12) \\ print initial 10 rows and 12 columns of array
CROSSREFS
Rows of A (columns of T): A153727 (row 1), A033478 (row 3), A033479 (row 9).
Columns of A (diagonals of T): A006370 (column 1), A075884 (column 2), A076536 (column 3).
Sequence in context: A051149 A293424 A152145 * A024553 A051758 A051568
KEYWORD
nonn,easy,tabl
AUTHOR
Felix Fröhlich, Jun 10 2017
STATUS
approved