OFFSET
0,3
LINKS
Sergey Kitaev, Partially Ordered Generalized Patterns, Discrete Math. 298 (2005), no. 1-3, 212-229.
FORMULA
From Petros Hadjicostas, Oct 29 2019: (Start)
Let b(n) = A111004(n) = number of permutations avoiding a consecutive 132 pattern. Then a(n) = 2*a(n-1) - b(n-1) + Sum_{i = 1..n-1} binomial(n-1,i) * b(i) * a(n-1-i) for n >= 1 with a(0) = b(0) = 1. [See the recurrence for C_n on p. 220 of Kitaev (2005).]
E.g.f.: If A(x) is the e.g.f. of (a(n): n >= 0) and B(x) is the e.g.f. of (b(n): n >= 0) (i.e., B(x) = 1/(1 - Int(exp(-t^2/2), t = 0..x))), then A'(x) = (1 + B(x)) * A(x) - B(x) with A(0) = B(0) = 1. [Theorem 16, p. 219, in Kitaev (2005)] (End)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 16 2019
EXTENSIONS
More terms from Petros Hadjicostas, Oct 29 2019 using a recurrence by Kitaev (2005)
STATUS
approved